Algebraic characterizations of distance-regular graphs

(Master of Science Thesis)

Safet Penjić
infoarrt@gmail.com
University of Sarajevo
Theoretical Computer Science

PMF Sarajevo, September 17, 2013

Outline

(1) Basic results from algebraic graph theory
(a.1) Perron-Frobenius theorem
(a.2) The number of walks
(a.3) The total number of rooted closed walks
(a.4) The adjacency (or Bose-Mesner) algebra $\mathcal{A}(\Gamma)$
(a.5) Hoffman polynomial
(2) Distance-regular graphs

Definition of distance-regular graph
Definition of local distance-regular graph
Characterization of DRG involving the distance matrices
Examples of distance-regular graphs
Characterization of DRG involving the distance polynomials

Outline II

(3) Characterizations involving the spectrum

Characterization of DRG involving the principal idempotent matrices
Characterizations involving the spectrum

Perron-Frobenius theorem

- Background of problem: Assume that someone give us some matrix A. What we can say about maximum eigenvalue of A, and appropriate eigenvector for that eigenvalue?

Let M be a nonnegative irreducible symmetric matrix. Then the largest eigenvalue λ_{0} has algebraic multiplicity 1 and has an eigenvector whose entries are all positive. For all other eigenvalues we have

Perron-Frobenius theorem

- Background of problem: Assume that someone give us some matrix A. What we can say about maximum eigenvalue of A, and appropriate eigenvector for that eigenvalue?

Theorem (Perron-Frobenius)

Let M be a nonnegative irreducible symmetric matrix. Then the largest eigenvalue λ_{0} has algebraic multiplicity 1 and has an eigenvector whose entries are all positive. For all other eigenvalues we have $\left|\lambda_{i}\right| \leq \lambda_{0}$.

Perron-Frobenius theorem

- Since Γ is connected, \boldsymbol{A} is an irreducible nonnegative matrix. Then, by the Perron-Frobenius theorem, the maximum eigenvalue λ_{0} is simple, positive (in fact, it coincides with the spectral radius of \boldsymbol{A}), and has a positive eigenvector \boldsymbol{v}, say, which is useful to normalize in such a way that $\min _{u \in V} \boldsymbol{v}_{u}=1$. Moreover, Γ is regular if and only if $\boldsymbol{v}=\boldsymbol{j}$, the all-1 vector (then $\lambda_{0}=\delta$, the degree of Γ).

Perron-Frobenius theorem - example

- a) Consider matrix $A=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$. Characteristic polynomial of A is

$$
\operatorname{char}(\lambda)=\lambda^{2}(\lambda-\sqrt{3})(\lambda+\sqrt{3}) .
$$

It follow that, maximum eigenvalue $\lambda_{0}=\sqrt{3}$ is simple, positive and coincides with spectral radius of A. Eigenvector for eigenvalue λ_{0} is $\boldsymbol{v}=(1,1,1, \sqrt{3})^{\top}$, so it is positive.

```
(a.1) Perron-Frobenius theorem
(a.2) The number of walks
(a.3) The total number of rooted closed walks
(a.4) The adjacency (or Bose-Mesner) algebra \(\mathcal{A}(\Gamma)\)
(a.5) Hoffman polynomial
```


Perron-Frobenius theorem - example

Simple graph Γ_{1} and its adjacency matrix.

Perron-Frobenius theorem - example

- b) Consider matrix $A=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$. Characteristic polynomial of A is

$$
\operatorname{char}(\lambda)=\lambda^{2}(\lambda-1)(\lambda-2)(\lambda+1)(\lambda+2)
$$

It follows that, maximum eigenvalue $\lambda_{0}=2$ is simple, positive and coincides with spectral radius of A. Eigenvector for eigenvalue λ_{0} is $\boldsymbol{v}=(1,1,1,2,2,1)^{\top}$, so it is positive.

```
(a.1) Perron-Frobenius theorem
(a.2) The number of walks
(a.3) The total number of rooted closed walks
(a.4) The adjacency (or Bose-Mesner) algebra \mathcal{A(\Gamma)}
(a.5) Hoffman polynomial
```


Perron-Frobenius theorem - example

Simple graph Γ_{2} and its adjacency matrix.

The number of walks of a given length

- Background of problem: Assume that someone give us some graph Г. What is easiest way to count the number of walks of given length $k \geq 0$ between vertices u and v ?
- The number of walks of length $k \geq 0$ between vertices u and v is $a_{u v}^{k}:=\left(\boldsymbol{A}^{k}\right)_{u v}$.

The number of walks of a given length

- Background of problem: Assume that someone give us some graph Γ. What is easiest way to count the number of walks of given length $k \geq 0$ between vertices u and v ?
- The number of walks of length $k \geq 0$ between vertices u and v is $a_{u v}^{k}:=\left(\boldsymbol{A}^{k}\right)_{u v}$.

The number of walks of a given length - example

- Consider graph Γ_{3}.

$$
\mathbf{A}=\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned}\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Simple graph Γ_{3} and its adjacency matrix.

The number of walks of a given length - example

- Let's say that we want to find number of walks of length 4 and 5 , between vertices 3 and 7 . Then first that we need to do is to find adjacency matrix for Γ_{3}. After that we need to find $(3,7)$-entry (or (7,3)-entry) of A^{4} and A^{5}.

The number of walks of a given length - example

- We have $A^{4}=\left[\begin{array}{cccccccc}7 & 6 & 5 & 1 & 1 & 0 & 0 & 6 \\ 6 & 12 & 2 & 5 & 0 & 1 & 1 & 6 \\ 5 & 2 & 7 & 0 & 5 & 1 & 1 & 5 \\ 1 & 5 & 0 & 7 & 2 & 5 & 5 & 1 \\ 1 & 0 & 5 & 2 & 12 & 6 & 6 & 1 \\ 0 & 1 & 1 & 5 & 6 & 7 & 6 & 0 \\ 0 & 1 & 1 & 5 & 6 & 6 & 7 & 0 \\ 6 & 6 & 5 & 1 & 1 & 0 & 0 & 7\end{array}\right]$ and

$$
A^{5}=\left[\begin{array}{cccccccc}
12 & 18 & 7 & 6 & 1 & 1 & 1 & 13 \\
18 & 14 & 17 & 2 & 7 & 1 & 1 & 18 \\
7 & 17 & 2 & 12 & 2 & 6 & 6 & 7 \\
6 & 2 & 12 & 2 & 17 & 7 & 7 & 6 \\
1 & 7 & 2 & 17 & 14 & 18 & 18 & 1 \\
1 & 1 & 6 & 7 & 18 & 12 & 13 & 1 \\
1 & 1 & 6 & 7 & 18 & 13 & 12 & 1 \\
13 & 18 & 7 & 6 & 1 & 1 & 1 & 12
\end{array}\right]
$$

(a.1) Perron-Frobenius theorem
 (a.2) The number of walks
 (a.3) The total number of rooted closed walks
 (a.4) The adjacency (or Bose-Mesner) algebra $\mathcal{A}(\Gamma)$
 (a.5) Hoffman polynomial

The total number of closed walks of a given length

- Background of problem: Assume that someone give us some simple graph Г. How can we compute the total number of rooted closed walks of given length?
- If $\Gamma=(V, E)$ has spectrum

then the total number of (rooted) closed walks of length $I \geq 0$ is $\operatorname{tr}\left(\boldsymbol{A}^{\prime}\right)=\sum_{i=0}^{d} m\left(\lambda_{i}\right) \lambda_{i}^{\prime}$.

The total number of closed walks of a given length

- Background of problem: Assume that someone give us some simple graph Г. How can we compute the total number of rooted closed walks of given length?
- If $\Gamma=(V, E)$ has spectrum

$$
\operatorname{spec}(\Gamma)=\left\{\lambda_{0}^{m\left(\lambda_{0}\right)}, \lambda_{1}^{m\left(\lambda_{1}\right)}, \ldots, \lambda_{d}^{m\left(\lambda_{d}\right)}\right\}
$$

then the total number of (rooted) closed walks of length $I \geq 0$ is $\operatorname{tr}\left(\boldsymbol{A}^{\prime}\right)=\sum_{i=0}^{d} m\left(\lambda_{i}\right) \lambda_{i}^{\prime}$.

The total number of closed walks - example

- Consider graph Γ_{4}

Simple graph Γ_{4} and its adjacency matrix.

The total number of closed walks - example

- This graph have three eigenvalues $\lambda_{0}=2, \lambda_{1}=\frac{\sqrt{5}}{2}-\frac{1}{2}$, $\lambda_{2}=-\frac{\sqrt{5}}{2}-\frac{1}{2}$, and spectrum:

$$
\operatorname{spec}\left(\Gamma_{4}\right)=\left\{2^{1},\left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2},\left(\frac{-\sqrt{5}}{2}-\frac{1}{2}\right)^{2}\right\}
$$

- Total number of rooted closed walks of length 3, 4 and 5 is

and

The total number of closed walks - example

- This graph have three eigenvalues $\lambda_{0}=2, \lambda_{1}=\frac{\sqrt{5}}{2}-\frac{1}{2}$, $\lambda_{2}=-\frac{\sqrt{5}}{2}-\frac{1}{2}$, and spectrum:

$$
\operatorname{spec}\left(\Gamma_{4}\right)=\left\{2^{1},\left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{2},\left(\frac{-\sqrt{5}}{2}-\frac{1}{2}\right)^{2}\right\}
$$

- Total number of rooted closed walks of length 3, 4 and 5 is

$$
\begin{aligned}
& \operatorname{tr} A^{3}=1 \cdot 2^{3}+2 \cdot\left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{3}+2 \cdot\left(\frac{-\sqrt{5}}{2}-\frac{1}{2}\right)^{3}=0, \\
& \operatorname{tr} A^{4}=1 \cdot 2^{4}+2 \cdot\left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{4}+2 \cdot\left(\frac{-\sqrt{5}}{2}-\frac{1}{2}\right)^{4}=30
\end{aligned}
$$

and

$$
\operatorname{tr} A^{5}=1 \cdot 2^{5}+2 \cdot\left(\frac{\sqrt{5}}{2}-\frac{1}{2}\right)^{5}+2 \cdot\left(\frac{-\sqrt{5}}{2}-\frac{1}{2}\right)^{5}=10 .
$$

```
(a.2) The number of walks
(a.3) The total number of rooted closed walks
(a.4) The adjacency (or Bose-Mesner) algebra \mathcal{A(\Gamma)}
(a.5) Hoffman polynomial
```


The adjacency (or Bose-Mesner) algebra $\mathcal{A}(\Gamma)$

- Background of problem: Assume that someone give us some simple graph Г. Can we form (define) some algebra that is connected with this graph? Can we say something about connection between the number of distinct eigenvalues and the diameter of graph?

The adjacency (or Bose-Mesner) algebra of a graph Γ is algebra of matrices which are polynomials in \boldsymbol{A} under the usual matrix operations. We shall denote this algebra by $\mathcal{A}=\mathcal{A}(\Gamma)$. Therefore

$$
\mathcal{A}(\Gamma)=\{p(\boldsymbol{A}): p \in \mathbb{R}[x]\}
$$

(elements in \mathcal{A} are matrices)

The adjacency (or Bose-Mesner) algebra $\mathcal{A}(\Gamma)$

- Background of problem: Assume that someone give us some simple graph Г. Can we form (define) some algebra that is connected with this graph? Can we say something about connection between the number of distinct eigenvalues and the diameter of graph?

Definition (adjacency algebra)

The adjacency (or Bose-Mesner) algebra of a graph 「 is algebra of matrices which are polynomials in \boldsymbol{A} under the usual matrix operations. We shall denote this algebra by $\mathcal{A}=\mathcal{A}(\Gamma)$. Therefore

$$
\mathcal{A}(\Gamma)=\{p(\boldsymbol{A}): p \in \mathbb{R}[x]\}
$$

(elements in \mathcal{A} are matrices).

The adjacency (or Bose-Mesner) algebra $\mathcal{A}(\Gamma)$

- If Γ has $d+1$ distinct eigenvalues, then $\left\{I, \boldsymbol{A}, \boldsymbol{A}^{2}, \ldots, \boldsymbol{A}^{d}\right\}$ is a basis of the adjacency or Bose-Mesner algebra $\mathcal{A}(\Gamma)$ of matrices which are polynomials in \boldsymbol{A}. Moreover, if Γ has diameter D,

$$
\operatorname{dim} \mathcal{A}(\Gamma)=d+1 \geq D+1
$$

because $\left\{I, \boldsymbol{A}, \boldsymbol{A}^{2}, \ldots, \boldsymbol{A}^{D}\right\}$ is a linearly independent set of $\mathcal{A}(\Gamma)$. Hence, the diameter is always less than the number of distinct eigenvalues: $D \leq d$.

The diameter is always less than the number of distinct eigenvalues - example

- a) Consider graph Γ_{5}.

$$
\mathbf{A}=\begin{gathered}
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Simple graph Γ_{5} and its adjacency matrix.

Basic results from algebraic graph theory
 Distance-regular graphs
 Characterizations involving the spectrum

The diameter is always less than the number of distinct eigenvalues - example

- Eigenvalues of Γ_{5} are $\lambda_{0}=3$ and $\lambda_{1}=-1$, so $d+1=2$. Diameter is $D=1$. Therefore $D=d$.

The diameter is always less than the number of distinct eigenvalues - example

-b) Consider graph Γ_{6}.

Γ_{6}

Simple graph Γ_{6} and its adjacency matrix.

The diameter is always less than the number of distinct eigenvalues - example

- Eigenvalues of Γ_{6} are $\lambda_{0}=3, \lambda_{1}=\sqrt{5}, \lambda_{2}=1, \lambda_{3}=-1$ and $\lambda_{4}=-\sqrt{5}$, so $d+1=5$. Diameter of Γ_{6} is $D=3$. Therefore $D<d$.

Hoffman polynomial

- Background of problem: Assume that someone give us some simple graph Γ. We want to know is there exists a polynomial $H(x)$ such that

$$
\boldsymbol{J}=H(\boldsymbol{A})
$$

where \boldsymbol{J} is square matrix of order n, which every entry is one, and \boldsymbol{A} is adjacency matrix of Γ ?

Hoffman polynomial

- A graph $\Gamma=(V, E)$ with eigenvalues $\lambda_{0}>\lambda_{1}>\ldots>\lambda_{d}$ is a regular graph if and only if there exists a polynomial $H \in \mathbb{R}_{d}[x]$ such that $H(\boldsymbol{A})=\boldsymbol{J}$, the all- 1 matrix. This polynomial is unique and it is called the Hoffman polynomial. It has zeros at the eigenvalues $\lambda_{i}, i \neq 0$, and $H\left(\lambda_{0}\right)=n:=|V|$. Thus,

$$
H=\frac{n}{\pi_{0}} \prod_{i=1}^{d}\left(x-\lambda_{i}\right)
$$

where $\pi_{0}:=\prod_{i=0}^{d}\left(\lambda_{0}-\lambda_{i}\right)$.

Some notation before definition of DRG

- Let $\Gamma=(V, E)$ denote a simple connected graph with vertex set V, edge set E and diameter D. Let ∂ denotes the path-length distance function for Γ.
- $\Gamma_{i}(x):=\{y \in V: \partial(x, y)=i\}$
- $\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|$ denote the number of elements of the set
- The eccentricity of a vertex u is ecc $(u):=\max _{v \in V} \partial(u, v)$ and the diameter of the graph is $D:=\max _{u \in V \operatorname{ecc}(u) \text {. }}^{\text {. }}$

Some notation before definition of DRG

- Let $\Gamma=(V, E)$ denote a simple connected graph with vertex set V, edge set E and diameter D. Let ∂ denotes the path-length distance function for Γ.
- $\Gamma_{i}(x):=\{y \in V: \partial(x, y)=i\}$

Some notation before definition of DRG

- Let $\Gamma=(V, E)$ denote a simple connected graph with vertex set V, edge set E and diameter D. Let ∂ denotes the path-length distance function for Γ.
- $\Gamma_{i}(x):=\{y \in V: \partial(x, y)=i\}$
- $\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|$ denote the number of elements of the set $\Gamma_{i}(x) \cap \Gamma_{j}(y)$
- The eccentricity of a vertex u is $\operatorname{ecc}(u):=\max _{v \in V} \partial(u, v)$ and the diameter of the graph is $D:=\max _{u \in V} \operatorname{ecc}(u)$.

Some notation before definition of DRG

- Let $\Gamma=(V, E)$ denote a simple connected graph with vertex set V, edge set E and diameter D. Let ∂ denotes the path-length distance function for Γ.
- $\Gamma_{i}(x):=\{y \in V: \partial(x, y)=i\}$
- $\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|$ denote the number of elements of the set $\Gamma_{i}(x) \cap \Gamma_{j}(y)$
- The eccentricity of a vertex u is $\operatorname{ecc}(u):=\max _{v \in V} \partial(u, v)$ and the diameter of the graph is $D:=\max _{u \in V} \operatorname{ecc}(u)$.

Some notation before definition of DRG - example

Petersen graph. We have $\partial\left(v_{1}, v_{2}\right)=2, \Gamma_{1}\left(v_{1}\right)=\left\{u_{1}, v_{3}, v_{4}\right\}$,
$\Gamma_{2}\left(v_{2}\right)=\left\{u_{1}, u_{3}, u_{4}, u_{5}, v_{1}, v_{3}\right\},\left|\Gamma_{1}\left(v_{1}\right) \cap \Gamma_{2}\left(v_{2}\right)\right|=\left|\left\{u_{1}, v_{3}\right\}\right|=2$.

Distance-regular graphs

Definition (distance-regular graphs)

A simple connected graph $\Gamma=(V, E)$ with diameter D is called distance-regular whenever there exist numbers $p_{i j}^{h}(0 \leq h, i, j \leq D)$ such that for any $x, y \in V$ with $\partial(x, y)=h$ we have

$$
\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|=p_{i j}^{h} .
$$

Local distance-regular graph

Definition (local distance-regular graph)

Let $y \in V$ be a vertex with eccentricity $\operatorname{ecc}(y)=\varepsilon$ of a regular graph Γ. Let $V_{k}:=\Gamma_{k}(y)$ and consider the numbers

$$
\begin{aligned}
c_{k}(x) & :=\left|\Gamma_{1}(x) \cap V_{k-1}\right|, \\
a_{k}(x) & :=\left|\Gamma_{1}(x) \cap V_{k}\right|, \\
b_{k}(x) & :=\left|\Gamma_{1}(x) \cap V_{k+1}\right|,
\end{aligned}
$$

defined for any $x \in V_{k}$ and $0 \leq k \leq \varepsilon$ (where, by convention, $c_{0}(x)=0$ and $b_{\varepsilon}(x)=0$ for any $\left.x \in V_{\varepsilon}\right)$. We say that Γ is distance-regular around y whenever $c_{k}(x), a_{k}(x), b_{k}(x)$ do not depend on the considered vertex $x \in V_{k}$ but only on the value of k.

Local distance-regular graph

Intersection numbers around y.

Local distance-regular graph - example

Simple connected regular graph that is distance-regular around vertices 1 and 8 . This graph is known as Hoffman graph.

Local distance-regular graph - example

Simple connected graph that is distance-regular around vertex 14 .

Distance- i matrix

Definition (distance-i matrix)

Let $\Gamma=(V, E)$ denote a graph with diameter D, adjacency matrix \boldsymbol{A} and let $\operatorname{Mat}_{\Gamma}(\mathbb{R})$ denote the \mathbb{R}-algebra consisting of the matrices with entries in \mathbb{R}, and rows and columns indexed by the vertices of Γ. For $0 \leq i \leq D$ we define distance-i matrix $\boldsymbol{A}_{i} \in \operatorname{Mat}_{\Gamma}(\mathbb{R})$ with entries $\left(\boldsymbol{A}_{i}\right)_{u v}=1$ if $\partial(u, v)=i$ and $\left(\boldsymbol{A}_{i}\right)_{u v}=0$ otherwise. Note that \boldsymbol{A}_{0} is the identity matrix and $\boldsymbol{A}_{1}=\boldsymbol{A}$ is the usual adjacency matrix of Γ.

Distance-i matrix - example

Distance- i matrices for octahedron are

$$
\boldsymbol{A}_{0}=I, \quad \boldsymbol{A}_{1}=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right], \quad \boldsymbol{A}_{2}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

Distance o-algebra

Lemma

Let $\boldsymbol{A}_{i} \in \operatorname{Mat}_{\Gamma}(\mathbb{R})$ denote a distance-i matrices. Vector space \mathcal{D} defined by

$$
\mathcal{D}=\operatorname{span}\left\{\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{D}\right\}
$$

forms an algebra with the entrywise or Hadamard product of matrices, defined by $(X \circ Y)_{u v}=(X)_{u v}(Y)_{u v}$.

Definition (distance o-algebra)

Vector space \mathcal{D} from Lemma above will be called the distance o-algebra of Γ.

An algebraic approach to DRG

- 「 regular

- Adjacency algebra ".", $\mathcal{A}=\operatorname{span}\left\{\boldsymbol{A}^{0}, \boldsymbol{A}^{1}, \ldots, \boldsymbol{A}^{d}\right\}$
- Distance algebra " ${ }^{\circ}$ ", $\mathcal{D}=\operatorname{span}\left\{\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{D}\right\}$
- 「 is not distance-regular

Characterization A

Theorem (characterization A)

Let $\Gamma=(V, E)$ denote a graph with diameter D and let the set $\Gamma_{h}(u)$ represents the set of vertices at distance h from vertex u. Γ is distance-regular if and only if is distance-regular around each of its vertices and with the same intersection array (with another words if and only if for any two vertices $u, v \in V$ at distance $\partial(u, v)=h$, $0 \leq h \leq D$, the numbers

$$
\begin{gathered}
c_{h}(u, v):=\left|\Gamma_{h-1}(u) \cap \Gamma(v)\right|, \quad a_{h}(u, v):=\left|\Gamma_{h}(u) \cap \Gamma(v)\right|, \\
b_{h}(u, v):=\left|\Gamma_{h+1}(u) \cap \Gamma(v)\right|,
\end{gathered}
$$

do not depend on the chosen vertices u and v, but only on their distance h; in which case they are denoted by c_{h}, a_{h}, and b_{h}, respectively).

What is different between Definition of DRG and Characterization A

- In definition of DRG, for fix h, we must consider numbers $p_{i j}^{h}$ for all $0 \leq i \leq D$ and $0 \leq j \leq D$.
- In previous Corollary, for fix h, we consider just $p_{1, h-1}^{h}, p_{1 h}^{h}$ and $p_{1, h+1}^{h}$, that is for i we pick 1 and for j we pick $h-1, h$ and $h+1$.

Hoffman graph

- Hoffman graph with distance partitions.

Cyclic 6-ladder

- Cyclic 6-ladder is not distance-regular.

Cyclic 6-ladder is not distance-regular

- Distance partition with respect to vertices 0 and c.

The cube

- The graph that is pictured on Figure below is called cube. The cube is distance-regular graph.

The cube

The cube - sketch of proof

- The cube drawn on four different way, and subsets of vertices at given distances from the root.

Characterization B

Theorem (characterization B)

A graph $\Gamma=(V, E)$ with diameter D is distance-regular if and only if, for any integers $0 \leq i, j \leq D$, its distance matrices satisfy

$$
\boldsymbol{A}_{i} \boldsymbol{A}_{j}=\sum_{k=0}^{D} p_{i j}^{k} \boldsymbol{A}_{k} \quad(0 \leq i, j \leq D)
$$

for some constants $p_{i j}^{k}$.

Characterization B'

Theorem (characterization B')

A graph $\Gamma=(V, E)$ with diameter D is distance-regular if and only if, for some constants $a_{h}, b_{h}, c_{h}(0 \leq h \leq D), c_{0}=b_{D}=0$, its distance matrices satisfy the three-term recurrence

$$
\boldsymbol{A}_{h} \boldsymbol{A}=b_{h-1} \boldsymbol{A}_{h-1}+a_{h} \boldsymbol{A}_{h}+c_{h+1} \boldsymbol{A}_{h+1} \quad(0 \leq h \leq D)
$$

where, by convention, $b_{-1}=c_{D+1}=0$.

Characterization C

Theorem (characterization C)

A graph $\Gamma=(V, E)$ with diameter D is distance-regular if and only if $\left\{I, \boldsymbol{A}, \ldots, \boldsymbol{A}_{D}\right\}$ is a basis of the adjacency algebra $\mathcal{A}(\Gamma)$.

Characterization C'

Theorem (characterization C')

Let Γ be a graph of diameter D and let $\boldsymbol{A}_{\boldsymbol{i}}$ be the distance- i matrix of Γ. Then Γ is distance-regular if and only if \boldsymbol{A} acts by right (or left) multiplication as a linear operator on the vector space $\operatorname{span}\left\{I, \boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{D}\right\}$.

An algebraic approach to DRG

- Γ is distance-regular

- Adjacency algebra " \because ", $\mathcal{A}=\operatorname{span}\left\{\boldsymbol{A}^{0}, \boldsymbol{A}^{1}, \ldots, \boldsymbol{A}^{d}\right\}$
- Distance algebra "o", $\mathcal{D}=\operatorname{span}\left\{\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{D}\right\}$

Hamming graphs

Definition (Hamming graph)

The Hamming graph $H(n, q)$ is the graph whose vertices are words (sequences or n-tuples) of length n from an alphabet of size $q \geq 2$. Two vertices are considered adjacent if the words (or n tuples) differ in exactly one term. We observe that $|V(H(n, q))|=$ q^{n}.

Lemma

The Hamming graph $H(n, q)$ is distance-regular (with $a_{i}=i(q-2)$ $(0 \leq i \leq n), b_{i}=(n-i)(q-1)(0 \leq i \leq n-1)$ and $c_{i}=i$ $(1 \leq i \leq n)$.

Hamming graphs $H(3,2)$

- Hamming graph $H(3,2)$.

Characterization of DRG involving the distance matrices
Examples of distance-regular graphs
Characterization of DRG involving the distance polynomials

Hamming graphs $H(1,4)$

- Hamming graph $H(1,4)$.

Basic results from algebraic graph theory
Distance-regular graphs
Characterizations involving the spectrum

Hamming graphs $H(2,3)$

- Hamming graph $H(2,3)$.

Hamming graphs $H(4,2)$

- Hamming graph $H(4,2)$.

Johnson graph

Definition (Johnson graph $J(n, r)$)

The Johnson graph $J(n, r)$, is the graph whose vertices are the r element subsets of a n-element set S. Two vertices are adjacent if the size of their intersection is exactly $r-1$. To put it on another way, vertices are adjacent if they differ in only one term. We observe that $|V(J(n, r))|=\binom{n}{r}$.

Lemma

Johnson graph $J(n, r)$ is distance-regular with intersection numbers $a_{i}=(r-i) i+i(n-r-i), b_{i}=(r-i)(n-r-i), c_{i}=i^{2}$.

Johnson graph J(4, 2)

- Johnson graph $J(4,2)$, drawn in two different ways (this graph is also known as octahedron).

Characterizations involving the spectrum

Johnson graph $J(3,2)$

- Johnson graph $J(3,2)$.

Characterizations involving the spectrum

Johnson graph $J(5,3)$

- Johnson graph $J(5,3)$.

Petersen graph

GPG(5,2)

- Petersen graph $\operatorname{GPG}(5,2)$, drawn in two ways.

Distance-polynomial graphs, distance polynomials

Definition (distance-polynomial graphs, distance polynomials)

Graph Γ is called a distance-polynomial graph if and only if its distance matrix $\boldsymbol{A}_{\boldsymbol{i}}$ is a polynomial in \boldsymbol{A} for each $i=0,1, \ldots, D$, where D is the diameter of Γ. Polynomials $\left\{p_{k}\right\}_{0 \leq k \leq D}$ in \boldsymbol{A}, such that

$$
\boldsymbol{A}_{k}=p_{k}(\boldsymbol{A}) \quad(0 \leq k \leq D),
$$

are called the distance polynomials (of course, $p_{0}=1$ and $p_{1}=x$).

Basic results from algebraic graph theory
Distance-regular graphs
Characterizations involving the spectrum

Characterization D

Theorem (characterization D)

A graph $\Gamma=(V, E)$ with diameter D is distance-regular if and only if, for any integer $h, 0 \leq h \leq D$, the distance- h matrix \boldsymbol{A}_{h} is a polynomial of degree h in \boldsymbol{A}; that is:

$$
\boldsymbol{A}_{h}=p_{h}(\boldsymbol{A}) \quad(0 \leq h \leq D) .
$$

Illustration of classes for distance-regular and distance-polynomial graphs.

$60 / 81$

```
Definition of distance-regular graph
Definition of local distance-regular graph
Characterization of DRG involving the distance matrices
Examples of distance-regular graphs
Characterization of DRG involving the distance polynomials
```


Characterization E

Theorem (characterization E)

A graph $\Gamma=(V, E)$ is distance-regular if and only if, for each nonnegative integer ℓ, the number $a_{u v}^{\ell}$ of walks of length ℓ between two vertices $u, v \in V$ only depends on $h=\partial(u, v)$.

Definition of distance-regular graph
 Definition of local distance-regular graph
 Characterization of DRG involving the distance matrices
 Examples of distance-regular graphs
 Characterization of DRG involving the distance polynomials

Characterization E'

Theorem (characterization E')

A regular graph $\Gamma=(V, E)$ with diameter D is distance-regular if and only if there are constants a_{h}^{h} and a_{h}^{h+1} such that, for any two vertices $u, v \in V$ at distance h, we have $a_{u v}^{h}=a_{h}^{h}\left(a_{u v}^{h}\right.$ - number of walks of length h) and $a_{u v}^{h+1}=a_{h}^{h+1}$ for any $0 \leq h \leq D-1$, and $a_{u v}^{D}=a_{D}^{D}$ for $h=D$.

Difference between Characterization E and E

- $h=\partial(u, v)$
- In characterization E we consider the number $a_{u v}^{\ell}$ of walks of length ℓ between two vertices $u, v \in V$, where $\ell=1,2,3, \ldots, h, h+1, \ldots$
- In characterization E' we consider the number $a_{u v}^{\ell}$ of walks of length ℓ between two vertices $u, v \in V$, where $\ell=h, h+1$.

Principal idempotents

Definition (principal idempotents)

Let $\Gamma=(V, E)$ denote simple graph with adjacency matrix \boldsymbol{A}, and let $\lambda_{0} \geq \lambda_{1} \geq \ldots \geq \lambda_{d}$ be distinct eigenvalues. For each eigenvalue $\lambda_{i}, 0 \leq i \leq d$, let U_{i} be the matrix whose columns form an orthonormal basis of its eigenspace $\mathcal{E}_{i}:=\operatorname{ker}\left(\boldsymbol{A}-\lambda_{i} I\right)$. The principal idempotents of \boldsymbol{A} are matrices $\boldsymbol{E}_{i}:=U_{i} U_{i}^{\top}$.

Theorem

Principal idempotents of \lceil represents the orthogonal projectors onto \mathcal{E}_{i}.

Principal idempotents of Γ represents the orthogonal projectors onto \mathcal{E}_{i}.

Some easy results

Proposition

Let $\Gamma=(V, E)$ denote a simple graph with adjacency matrix \boldsymbol{A} and with $d+1$ distinct eigenvalues $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{d}$. Principal idempotents $E_{0}, E_{1}, \ldots, E_{d}$ satisfy the following properties:
(i) $\boldsymbol{E}_{i} \boldsymbol{E}_{j}=\delta_{i j} \boldsymbol{E}_{i}=\left\{\begin{aligned} \boldsymbol{E}_{i} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{aligned}\right.$;
(ii) $\boldsymbol{A} \boldsymbol{E}_{i}=\lambda_{i} \boldsymbol{E}_{i}$, where $\lambda_{i} \in \sigma(\boldsymbol{A})$;
(iii) $p(\boldsymbol{A})=\sum_{i=0}^{d} p\left(\lambda_{i}\right) \boldsymbol{E}_{i}, \forall p \in \mathbb{R}[x]$, where $\lambda_{i} \in \sigma(\boldsymbol{A})$;
(iv) $E_{0}+E_{1}+\ldots+E_{d}=\sum_{i=0}^{d} E_{i}=I$;
(v) $\sum_{i=0}^{d} \lambda_{i} \boldsymbol{E}_{i}=\boldsymbol{A}$, where $\lambda_{i} \in \sigma(\boldsymbol{A})$.

Characterization of DRG involving the principal idempotent matr Characterizations involving the spectrum

Some easy results

Proposition

Set $\left\{\boldsymbol{E}_{0}, \boldsymbol{E}_{1}, \ldots, \boldsymbol{E}_{d}\right\}$ is an orthogonal basis of $\mathcal{A}(\Gamma)$.

An algebraic approach to DRG

-「 regular

- Adjacency algebra ".",

$$
\mathcal{A}=\operatorname{span}\left\{\boldsymbol{A}^{0}, \boldsymbol{A}^{1}, \ldots, \boldsymbol{A}^{d}\right\}=\operatorname{span}\left\{\boldsymbol{E}_{0}, \boldsymbol{E}_{1}, \ldots, \boldsymbol{E}_{d}\right\}
$$

- Distance algebra "o", $\mathcal{D}=\operatorname{span}\left\{\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{D}\right\}$
- Γ is not distance-regular

Characterization D'

Theorem (characterization D')

A graph $\Gamma=(V, E)$ with diameter D and $d+1$ distinct eigenvalues is distance-regular if and only if Γ is regular, has spectrally maximum diameter $(D=d)$ and the matrix \boldsymbol{A}_{D} is polynomial in \boldsymbol{A}.

Characterization F

Theorem (characterization F)

Γ distance-regular $\Longleftrightarrow \boldsymbol{A}_{i} \boldsymbol{E}_{j}=p_{j i} \boldsymbol{E}_{j}, \quad i, j=0,1, \ldots, d(=D)$,

$$
\begin{aligned}
& \Longleftrightarrow \quad \boldsymbol{A}_{i}=\sum_{j=0}^{d} p_{j i} \boldsymbol{E}_{j}, \quad i=0,1, \ldots, d(=D), \\
& \Longleftrightarrow \quad \boldsymbol{A}_{i}=\sum_{j=0}^{d} p_{i}\left(\lambda_{j}\right) \boldsymbol{E}_{j}, \quad i=0,1, \ldots, d(=D), \\
& \Longleftrightarrow \quad \boldsymbol{A}_{i} \in \mathcal{A}, \quad i=0,1, \ldots, d(=D) .
\end{aligned}
$$

Characterization G

Theorem (characterization G)

A graph Γ with diameter D and $d+1$ distinct eigenvalues is a distance-regular graph if and only if for every $0 \leq i \leq d$ and for every pair of vertices u, v of Γ, the (u, v)-entry of \boldsymbol{E}_{i} depends only on the distance between u and v.

Characterization H

Theorem (characterization H)

「 distance-regular

$$
\Longleftrightarrow \boldsymbol{E}_{j} \circ \boldsymbol{A}_{i}=q_{i j} \boldsymbol{A}_{i}, \quad i, j=0,1, \ldots, d(=D),
$$

$$
\Longleftrightarrow \boldsymbol{E}_{j}=\sum_{i=0}^{D} q_{i j} \boldsymbol{A}_{i}, \quad j=0,1, \ldots, d(=D)
$$

$$
\Longleftrightarrow \boldsymbol{E}_{j}=\frac{1}{n} \sum_{i=0}^{d} q_{i}\left(\lambda_{j}\right) \boldsymbol{A}_{i}, \quad j=0,1, \ldots, d(=D)
$$

$\Longleftrightarrow \quad E_{j} \in \mathcal{D}, \quad j=0,1, \ldots, d(=D)$.

Characterization of DRG involving the principal idempotent matr Characterizations involving the spectrum

Characterization I

Theorem (characterization I)

Γ distance-regular $\Longleftrightarrow \boldsymbol{A}^{j} \circ \boldsymbol{A}_{i}=a_{i}^{(j)} \boldsymbol{A}_{i}, \quad i, j=0,1, \ldots, d(=D)$

$$
\begin{aligned}
& \Longleftrightarrow \boldsymbol{A}^{j}=\sum_{i=0}^{d} a_{i}^{(j)} \boldsymbol{A}_{i}, \quad i, j=0,1, \ldots, d(=D), \\
& \Longleftrightarrow \boldsymbol{A}^{j}=\sum_{i=0}^{d} \sum_{\ell=0}^{d} q_{i} \lambda_{\ell}^{j} \boldsymbol{A}_{i}, \quad j=0,1, \ldots, d(=D), \\
& \Longleftrightarrow \quad \boldsymbol{A}^{j} \in \mathcal{D}, \quad j=0,1, \ldots, d
\end{aligned}
$$

An algebraic approach to DRG

- The following statements are equivalent:
(i) Γ is distance-regular,
(ii) \mathcal{D} is an algebra with the ordinary product,
(iii) \mathcal{A} is an algebra with the Hadamard product, (iv) $\mathcal{A}=\mathcal{D}$.

Spectrum

- The spectrum of a graph Γ is the set of numbers which are eigenvalues of $\boldsymbol{A}(\Gamma)$, together with their multiplicities as eigenvalues of $\boldsymbol{A}(\Gamma)$. If the distinct eigenvalues of $\boldsymbol{A}(\Gamma)$ are $\lambda_{0}>\lambda_{1}>\ldots>\lambda_{s-1}$ and their multiplicities are $m\left(\lambda_{0}\right)$, $m\left(\lambda_{1}\right), \ldots, m\left(\lambda_{s-1}\right)$, then we shall write

$$
\operatorname{spec}(\Gamma)=\left\{\lambda_{0}^{m\left(\lambda_{0}\right)}, \lambda_{1}^{m\left(\lambda_{1}\right)}, \ldots, \lambda_{s-1}^{m\left(\lambda_{s-1}\right)}\right\} .
$$

Predistance polynomials

Definition (predistance polynomials)

Let $\Gamma=(V, E)$ be a simple connected graph with $|V|=n$ (number of vertices is n). The predistance polynomials p_{0}, p_{1}, \ldots, $p_{d}, \operatorname{deg} p_{i}=i$, associated with a given graph Γ with spectrum $\operatorname{spec}(\Gamma)=\operatorname{spec}(\boldsymbol{A})=\left\{\lambda_{0}^{m_{0}}, \lambda_{1}^{m_{1}}, \ldots, \lambda_{d}^{m_{d}}\right\}$, are orthogonal polynomials with respect to the scalar product

$$
\langle p, q\rangle=\frac{1}{n} \operatorname{trace}(p(\boldsymbol{A}) q(\boldsymbol{A}))=\frac{1}{n} \sum_{k=0}^{d} m_{k} p\left(\lambda_{k}\right) q\left(\lambda_{k}\right)
$$

on the space of all polynomials with degree at most d, normalized in such a way that $\left\|p_{i}\right\|^{2}=p_{i}\left(\lambda_{0}\right)$.

Characterization J

Theorem (characterization J)

A regular graph 「 with n vertices and predistance polynomials $\left\{p_{k}\right\}_{0 \leq k \leq d}$ is distance-regular if and only if

$$
q_{k}\left(\lambda_{0}\right)=\frac{n}{\sum_{u \in V} \frac{1}{s_{k}(u)}} \quad(0 \leq k \leq d)
$$

where $q_{k}=p_{0}+\ldots+p_{k}, s_{k}(u)=\left|N_{k}(u)\right|=\left|\Gamma_{0}(u)\right|+\left|\Gamma_{1}(u)\right|+\ldots+$ $\left|\Gamma_{k}(u)\right|$.

Characterization K

Theorem (characterization K)

A graph $\Gamma=(V, E)$ with predistance polynomials $\left\{p_{k}\right\}_{0 \leq k \leq d}$ is distance-regular if and only if the number of vertices at distance k from every vertex $u \in V$ is

$$
p_{k}\left(\lambda_{0}\right)=\left|\Gamma_{k}(u)\right| \quad(0 \leq k \leq d) .
$$

Characterization J'

Theorem (characterization J')

A regular graph Γ with n vertices and $\operatorname{spectrum} \operatorname{spec}(\Gamma)=$ $\left\{\lambda_{0}^{m\left(\lambda_{0}\right)}, \lambda_{1}^{m\left(\lambda_{1}\right)}, \ldots, \lambda_{d}^{m\left(\lambda_{d}\right)}\right\}$ is distance-regular if and only if

$$
\frac{\sum_{u \in V} n /\left(n-k_{d}(u)\right)}{\sum_{u \in V} k_{d}(u) /\left(n-k_{d}(u)\right)}=\sum_{i=0}^{d} \frac{\pi_{0}^{2}}{m\left(\lambda_{i}\right) \pi_{i}^{2}}
$$

where $\pi_{h}=\prod_{\substack{i=0 \\ i \neq h}}^{d}\left(\lambda_{h}-\lambda_{i}\right)$ and $k_{d}(u)=\left|\Gamma_{d}(u)\right|$.

Part of references I

- [4] N. Biggs: "Algebraic Graph Theory", Cambridge tracts in Mathematics, 1974.
- [13] E. R. van Dam: 'The spectral excess theorem for distance-regular graphs: a global (over)view", The electronic journal of combinatorics 15 (\#R129), 2008
- [19] M.A. Fiol, E. Garriga, and J.L.A. Yebra: 'Locally pseudo-distance-regular graphs", J.Combin. Theory Ser. B68 (1996), 179-205.

Part of references II

- [9] M. Cámara, J. Fàbrega, M. A. Fiol, E. Garriga: "Some Families of Orthogonal Polynomials of a Discrete Variable and their Applications to Graphs and Codes", The electronic journal of combinatorics 16 (\#R83), 2009
- [23] M.A. Fiol: "Algebraic characterizations of distance-regular graphs", Discrete Mathematics 246(1-3), page 111-129, 2002.
- [24] M.A. Fiol: "Algebraic characterizations of bipartite distance-regular graphs", 3rd International Workshop on Optimal Networks Topologies, IWONT 2010
- [38] Š. Miklavič: Part of Lectures from "PhD Course Algebraic Combinatorics, Computability and Complexity" in TEMPUS project SEE Doctoral Studies in Mathematical Sciences, 2011

