
9.4 Some Characteristics Of Integer Programs—A Sample Problem 287

subject to:

D−

J∑
j =1

di j xi j ≥ 0 (i = 1, 2, . . . , I),

J∑
j =1

xi j = 1 (i = 1, 2, . . . , I),

I∑
i =1

xi j ≤ y j I (j = 1, 2, . . . , J),

Sj −

I∑
i =1

pi xi j = 0 (j = 1, 2, . . . , J),

J∑
j =1

f j (sj) ≤ B,

y1 + y2 − 2y ≥ 0,

y3 + y4 + 2y ≥ 2,

xi j , y j , y binary (i = 1, 2, . . . , I ; j = 1, 2, . . . , J).

At this point we might replace each functionf j (sj)by an integer-programming approximation to complete
the model. Details are left to the reader. Note that iff j (sj) contains a fixed cost, then new fixed-cost variables
need not be introduced—the variabley j serves this purpose.

The last comment, and the way in which the conditional constraint ‘‘y j = 0 implies xi j = 0 (i =

1, 2, . . . , I)’’ has been modeled above, indicate that the formulation techniques of Section 9.2 should not
be applied without thought. Rather, they provide a common framework for modeling and should be used in
conjunction with good modeling ‘‘common sense.’’ In general, it is best to introduce as few integer variables
as possible.

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS—A SAMPLE PROBLEM

Whereas the simplex method is effective for solving linear programs, there is no single technique for solving
integer programs. Instead, a number of procedures have been developed, and the performance of any particular
technique appears to be highly problem-dependent. Methods to date can be classified broadly as following
one of three approaches:

i) enumeration techniques, including the branch-and-bound procedure;
ii) cutting-plane techniques; and

iii) group-theoretic techniques.

In addition, several composite procedures have been proposed, which combine techniques using several of
these approaches. In fact, there is a trend in computer systems for integer programming to include a number
of approaches and possibly utilize them all when analyzing a given problem. In the sections to follow, we
shall consider the first two approaches in some detail. At this point, we shall introduce a specific problem
and indicate some features of integer programs. Later we will use this example to illustrate and motivate the
solution procedures. Many characteristics of this example are shared by the integer version of the custom-
molder problem presented in Chapter 1.

The problem is to determinez∗ where:

z∗
= maxz = 5x1 + 8x2,

288 Integer Programming 9.5

subject to:

x1 + x2 ≤ 6,

5x1 + 9x2 ≤ 45,

x1, x2 ≥ 0 and integer.

The feasible region is sketched in Fig. 9.8. Dots in the shaded region are feasible integer points.

Figure 9.8 An integer programming example.

If the integrality restrictions on variables are dropped, the resulting problem is a linear program. We will
call it theassociated linear program. We may easily determine its optimal solution graphically. Table 9.1
depicts some of the features of the problem.

Table 9.1 Problem features.
Nearest

Continuous Round feasible Integer
optimum off point optimum

x1
9
4 = 2.25 2 2 0

x2
15
4 = 3.75 4 3 5

z 41.25 Infeasible 34 40

Observe that the optimal integer-programming solution is not obtained byroundingthe linear-programming
solution. The closest point to the optimal linear-program solution is not even feasible. Also, note that the
nearest feasible integer point to the linear-program solution is far removed from the optimal integer point.
Thus, it is not sufficient simply to round linear-programming solutions. In fact, by scaling the righthand-side
and cost coefficients of this example properly, we can construct a problem for which the optimal integer-
programming solution lies as far as we like from the rounded linear-programming solution, in eitherz value
or distance on the plane.

In an example as simple as this, almost any solution procedure will be effective. For instance, we could
easily enumerate all the integer points withx1 ≤ 9, x2 ≤ 6, and select the best feasible point. In practice, the
number of points to be considered is likely to prohibit such an exhaustive enumeration of potentially feasible
points, and a more sophisticated procedure will have to be adopted.

9.5 Branch-And-Bound 289

Figure 9.9 Subdividing the feasible region.

9.5 BRANCH-AND-BOUND

Branch-and-boundis essentially a strategy of ‘‘divide and conquer.’’ The idea is to partition the feasible
region into more manageable subdivisions and then, if required, to further partition the subdivisions. In
general, there are a number of ways to divide the feasible region, and as a consequence there are a number of
branch-and-bound algorithms. We shall consider one such technique, for problems with only binary variables,
in Section 9.7. For historical reasons, the technique that will be described next usually is referred to asthe
branch-and-bound procedure.

Basic Procedure

An integer linear program is a linear program further constrained by the integrality restrictions. Thus, in a
maximization problem, the value of the objective function, at the linear-program optimum, will always be an
upper bound on the optimal integer-programming objective. In addition, any integer feasible point is always
a lower bound on the optimal linear-program objective value.

The idea of branch-and-bound is to utilize these observations to systematically subdivide the linear-
programming feasible region and make assessments of the integer-programming problem based upon these
subdivisions. The method can be described easily by considering the example from the previous section.
At first, the linear-programming region is not subdivided: The integrality restrictions are dropped and the
associated linear program is solved, giving an optimal valuez0. From our remark above, this gives the upper
bound onz∗, z∗

≤ z0
= 411

4. Since the coefficients in the objective function are integral,z∗ must be integral
and this implies thatz∗

≤ 41.
Next note that the linear-programming solution hasx1 = 21

4 andx2 = 33
4. Both of these variables must

be integer in the optimal solution, and we can divide the feasible region in an attempt tomakeeither integral.
We know that, in any integer programming solution,x2 must be either an integer≤ 3 or an integer≥ 4. Thus,
our first subdivision is into the regions wherex2 ≤ 3 andx2 ≥ 4 as displayed by the shaded regionsL1 and
L2 in Fig. 9.9. Observe that, by making the subdivisions, we have excluded the old linear-program solution.
(If we selectedx1 instead, the region would be subdivided withx1 ≤ 2 andx1 ≥ 3.)

The results up to this point are pictured conveniently in anenumeration tree(Fig. 9.10). HereL0
represents the associated linear program, whose optimal solution has been included within theL0 box, and
the upper bound onz∗ appears to the right of the box. The boxes below correspond to the new subdivisions;
the constraints that subdivideL0 are included next to the lines joining the boxes. Thus, the constraints ofL1
are those ofL0 together with the constraintx2 ≥ 4, while the constraints ofL2 are those ofL0 together with
the constraintx2 ≤ 3.

The strategy to be pursued now may be apparent: Simply treat each subdivision as we did the original
problem. ConsiderL1 first. Graphically, from Fig. 9.9 we see that the optimal linear-programming solution

290 Integer Programming 9.5

Figure 9.10 Enumeration tree.

Figure 9.11 Subdividing the regionL1.

lies on the second constraint withx2 = 4, giving x1 =
1
5(45 − 9(4)) =

9
5 and an objective valuez =

5
(9

5

)
+8(4) = 41. Sincex1 is not integer, we subdivideL1 further, into the regionsL3 with x1 ≥ 2 andL4 with

x1 ≤ 1. L3 is an infeasible problem and so this branch of the enumeration tree no longer needs to be considered.
The enumeration tree now becomes that shown in Fig. 9.12. Note that the constraints of any subdivision

are obtained by tracing back toL0. For example,L4 contains the original constraints together withx2 ≥ 4
andx1 ≤ 2. The asterisk (∗) below boxL3 indicates that the region need not be subdivided or, equivalently,
that the tree will not be extended from this box.

At this point, subdivisionsL2 and L4 must be considered. We may select one arbitrarily; however,
in practice, a number of useful heuristics are applied to make this choice. For simplicity, let us select the
subdivision most recently generated, hereL4. Analyzing the region, we find that its optimal solution has

x1 = 1, x2 =
1
9(45− 5) =

40
9 .

Sincex2 is not integer,L4 must be further subdivided intoL5 with x2 ≤ 4, andL6 with x2 ≥ 5, leavingL2,
L5 andL6 yet to be considered.

TreatingL5 first (see Fig. 9.13), we see that its optimum hasx1 = 1, x2 = 4, andz = 37. Since this is
the best linear-programming solution forL5 and the linear program contains every integer solution inL5, no
integer point in that subdivision can give a larger objective value than this point. Consequently, other points

9.5 Branch-And-Bound 291

Figure 9.12

Figure 9.13 Final subdivisions for the example.

in L5 need never be considered andL5 need not be subdivided further. In fact, sincex1 = 1, x2 = 4, z = 37,
is a feasible solution to the original problem,z∗

≥ 37 and we now have the bounds 37≤ z∗
≤ 41. Without

further analysis, we could terminate with the integer solutionx1 = 1, x2 = 4, knowing that the objective
value of this point is within 10 percent of the true optimum. For convenience, the lower boundz∗

≥ 37 just
determined has been appended to the right of theL5 box in the enumeration tree (Fig. 9.14).

Although x1 = 1, x2 = 4 is the best integer point inL5, the regionsL2 and L6 might contain better
feasible solutions, and we must continue the procedure by analyzing these regions. InL6, the only feasible
point isx1 = 0, x2 = 5, giving an objective valuez = +40. This is better than the previous integer point and
thus the lower bound onz∗ improves, so that 40≤ z∗

≤ 41. We could terminate with this integer solution
knowing that it is within 2.5 percent of the true optimum. However,L2 couldcontain an even better integer
solution.

The linear-programming solution inL2 hasx1 = x2 = 3 andz = 39. This is the best integer point in
L2 but is not as good asx1 = 0, x2 = 5, so the later point (inL6) must indeed be optimal. It is interesting
to note that, even if the solution toL2 did not givex1 and x2 integer, but hadz < 40, then no feasible
(and, in particular, no integer point) inL2 could be as good asx1 = 0, x2 = 5, with z = 40. Thus, again
x1 = 0, x2 = 5 would be known to be optimal. This observation has important computational implications,

292 Integer Programming 9.5

Figure 9.14

since it is not necessary to drive every branch in the enumeration tree to an integer or infeasible solution, but
only to an objective value below the best integer solution.

The problem now is solved and the entire solution procedure can be summarized by the enumeration tree
in Fig. 9.15.

Figure 9.15

Further Considerations

There are three points that have yet to be considered with respect to the branch-and-bound procedure:

i) Can the linear programs corresponding to the subdivisions be solved efficiently?
ii) What is the best way to subdivide a given region, and which unanalyzed subdivision should be considered

next?

9.5 Branch-And-Bound 293

iii) Can the upper bound (z= 41, in the example) on the optimal valuez∗ of the integer program be improved
while the problem is being solved?

The answer to the first question is an unqualifiedyes. When moving from a region to one of its subdivisions,
we add one constraint that is not satisfied by the optimal linear-programming solution over the parent region.
Moreover, this was one motivation for the dual simplex algorithm, and it is natural to adopt that algorithm
here.

Referring to the sample problem will illustrate the method. The first two subdivisionsL1 andL2 in that
example were generated by adding the following constraints to the original problem:

For subdivision 1: x2 ≥ 4 or x2 − s3 = 4 (s3 ≥ 0);

For subdivision 2: x2 ≤ 3 or x2 + s4 = 3 (s4 ≥ 0).

In either case we add the new constraint to the optimal linear-programming tableau. For subdivision 1, this
gives:

(−z) −
5
4s1 −

3
4s2 = −411

4

x1 +
9
4s1 −

1
4s2 =

9
4jx2 −

5
4s1 +

1
4s2 =

15
4


Constraints from the
optimal canonical
form

−x2 + s3 = −4, Added constraint
x1, x2, s1, s2, s3 ≥ 0,

wheres1 ands2 are slack variables for the two constraints in the original problem formulation. Note that
the new constraint has been multiplied by−1, so that the slack variables3 can be used as a basic variable.
Since the basic variablex2 appears with a nonzero coefficient in the new constraint, though, we must pivot
to isolate this variable in the second constraint to re-express the system as:

(−z) −
5
4s1 −

3
4s2 = −411

4,

x1 +
9
4s1 −

1
4s2 =

9
4,

x2 −
5
4s1 +

1
4s2 =

15
4 ,

��
��
−

5
4s1 +

1
4s2 +s3 = −

1
4,

x1, x2, s1, s2, s3 ≥ 0.

These constraints are expressed in the proper form for applying the dual simplex algorithm, which will pivot
next to makes1 the basic variable in the third constraint. The resulting system is given by:

(−z) − s2 − s3 = −41,
x1 +

1
5s2 +

9
5s3 =

9
5,

x2 − s3 = 4,

s1 −
1
5s2 −

4
5s3 =

1
5,

x1, x2, s1, s2, s3 ≥ 0.

This tableau is optimal and gives the optimal linear-programming solution over the regionL1 asx1 =
9
5, x2 =

4, andz = 41. The same procedure can be used to determine the optimal solution inL2.
When the linear-programming problem contains many constraints, this approach for recovering an optimal

solution is very effective. After adding a new constraint and making the slack variable for that constraint
basic, we always have a starting solution for the dual-simplex algorithm with only one basic variable negative.
Usually, only a few dual-simplex pivoting operations are required to obtain the optimal solution. Using the
primal-simplex algorithm generally would require many more computations.

294 Integer Programming 9.5

Figure 9.16

Issue (ii) raised above is very important since, if we can make our choice of subdivisions in such a way
as to rapidly obtain a good (with luck, near-optimal) integer solutionẑ, then we can eliminate many potential
subdivisions immediately. Indeed, if any region has its linear programming valuez ≤ ẑ, then the objective
value of no integer point in that region can exceedẑ and the region need not be subdivided. There is no
universal method for making the required choice, although several heuristic procedures have been suggested,
such as selecting the subdivision with the largest optimal linear-programming value.†

Rules for determining which fractional variables to use in constructing subdivisions are more subtle.
Recall that any fractional variable can be used to generate a subdivision. One procedure utilized is to look
ahead one step in the dual-simplex method for every possible subdivision to see which is most promising. The
details are somewhat involved and are omitted here. For expository purposes, we have selected the fractional
variable arbitrarily.

Finally, the upper boundzon the valuez∗ of the integer program can be improved as we solve the problem.
Suppose for example, that subdivisionL2 was analyzed before subdivisionsL5 or L6 in our sample problem.
The enumeration tree would be as shown in Fig. 9.16.

At this point, the optimal solution must lie in eitherL2 or L4. Since, however, the largest value for
any feasible point in either of these regions is 405

9, the optimal value for the problemz∗ cannotexceed405
9.

Becausez∗ must be integral, this implies thatz∗
≤ 40 and the upper bound has been improved from the value

41 provided by the solution to the linear program onL0. In general, the upper bound is given in this way as
the largest value of any ‘‘hanging’’ box (one that has not been divided) in the enumeration tree.

Summary

The essential idea of branch-and-bound is to subdivide the feasible region to developboundsz < z∗ < z on z∗.
For a maximization problem, the lower boundz is the highest value of any feasible integer point encountered.
The upper bound is given by the optimal value of the associated linear program or by the largest value for
the objective function at any ‘‘hanging’’ box. After considering a subdivision, we mustbranchto (move to)
another subdivision and analyze it. Also, ifeither

† One common method used in practice is to consider subdivisions on a last-generated–first-analyzed basis. We used
this rule in our previous example. Note that data to initiate the dual-simplex method mentioned above must be stored for
each subdivision that has yet to be analyzed. This data usually is stored in a list, with new information being added to the
top of the list. When required, data then is extracted from thetopof this list, leading to the last-generated–first-analyzed
rule. Observe that when we subdivide a region into two subdivisions, one of these subdivisions will be analyzed next.
The data required for this analysis already will be in the computer core and need not be extracted from the list.

9.6 Branch-And-Bound 295

i) the linear program overL j is infeasible;

ii) the optimal linear-programming solution overL j is integer;or

iii) the value of the linear-programming solutionz j overL j satisfiesz j
≤ z (if maximizing),

then L j need not be subdivided. In these cases, integer-programming terminology says thatL j has been
fathomed.† Case (i) is termed fathoming by infeasibility, (ii) fathoming by integrality, and (iii) fathoming by
bounds.

The flow chart in Fig. 9.17 summarizes the general procedure.

Figure 9.17 Branch-and-bound for integer-programming maximization.

† To fathomis defined as ‘‘to get to the bottom of; to understand thoroughly.’’ In this chapter,fathomedmight be more
appropriately defined as ‘‘understood enough or already considered.’’

296 Integer Programming 9.7

Figure 9.18

9.6 BRANCH-AND-BOUND FOR MIXED-INTEGER PROGRAMS

The branch-and-bound approach just described is easily extended to solve problems in which some, but not
all, variables are constrained to be integral. Subdivisions then are generated solely by the integral variables.
In every other way, the procedure is the same as that specified above. A brief example will illustrate the
method.

z∗
= maxz = −3x1 − 2x2 + 10,

subject to:

x1 − 2x2+ x3 =
5
2,

2x1 + x2 + x4 =
3
2,

x j ≥ 0 (j = 1, 2, 3, 4),

x2 and x3 integer.

The problem, as stated, is in canonical form, withx3 andx4 optimal basic variables for the associated linear
program.

The continuous variablex4 cannot be used to generate subdivisions since any value ofx4 ≥ 0 potentially
can be optimal. Consequently, the subdivisions must be defined byx3 ≤ 2 andx3 ≥ 3. The complete
procedure is summarized by the enumeration tree in Fig. 9.18.

The solution inL1 satisfies the integrality restrictions, soz∗
≥ z = 81

2. The only integral variable with a
fractional value in the optimal solution ofL2 is x2, so subdivisionsL3 andL4 are generated from this variable.
Finally, the optimal linear-programming value ofL4 is 8, so no feasible mixed-integer solution in that region
can be better than the value 81

2 already generated. Consequently, that region need not be subdivided and the
solution inL1 is optimal.

The dual-simplex iterations that solve the linear programs inL1, L2, L3, and L4 are given below in
Tableau 1. The variablessj in the tableaus are the slack variables for the
constraints added to generate the subdivisions. The coefficients in the appended constraints are determined
as we mentioned in the last section, by eliminating the basic variablesx j from the new constraint that is
introduced. To follow the iterations, recall that in the dual-simplex method, pivots are made on negative
elements in the generating row; if all elements in this row arepositive, as in regionL3, then the problem is
infeasible.

ne previo conten

Next: Cutting Plane Techniques Up: Solving Integer Programs Previous: Relationship to Linear
Programming

Branch and Bound

We will explain branch and bound by using the capital budgeting example from the previous section. In that
problem, the model is

The linear relaxation solution is with a value of 22. We know that no

integer solution will have value more than 22. Unfortunately, since is not integer, we do not have an
integer solution yet.

We want to force to be integer. To do so, we branch on , creating two new problems. In one, we will
add the constraint . In the other, we add the constraint . This is illustrated in Figure 2.

Figure 2: First Branching

Note that any optimal solution to the overall problem must be feasible to one of the subproblems. If we
solve the linear relaxations of the subproblems, we get the following solutions:

 : objective 21.65, , , , ;

 : objective 21.85, , , , .

At this point we know that the optimal integer solution is no more than 21.85 (we actually know it is less
than or equal to 21 (Why?)), but we still do not have any feasible integer solution. So, we will take a
subproblem and branch on one of its variables. In general, we will choose the subproblem as follows:

We will choose an active subproblem, which so far only means one we have not chosen before, and
We will choose the subproblem with the highest solution value (for maximization) (lowest for

Branch and Bound http://mat.gsia.cmu.edu/orclass/integer/node13.html

1 of 5 18.2.2010 21:47

minimization).

In this case, we will choose the subproblem with , and branch on . After solving the resulting

subproblems, we have the branch and bound tree in Figure 3.

Figure 3: Second Branching

The solutions are:

 , : objective 18, , , , ;

 , : objective 21.8, , , , .

We now have a feasible integer solution with value 18. Furthermore, since the problem

gave an integer solution, no further branching on that problem is necessary. It is not active due to integrality
of solution. There are still active subproblems that might give values more than 18. Using our rules, we will
branch on problem by branching on to get Figure 4.

Branch and Bound http://mat.gsia.cmu.edu/orclass/integer/node13.html

2 of 5 18.2.2010 21:47

Figure 4: Third Branching

The solutions are:

 , , : objective 21, , , , ;

 , , : infeasible.

Our best integer solution now has value 21. The subproblem that generates that is not active due to
integrality of solution. The other subproblem generated is not active due to infeasibility. There is still a
subproblem that is active. It is the subproblem with solution value 21.65. By our ``round-down'' result, there
is no better solution for this subproblem than 21. But we already have a solution with value 21. It is not
useful to search for another such solution. We can fathom this subproblem based on the above bounding
argument and mark it not active. There are no longer any active subproblems, so the optimal solution value
is 21.

We have seen all parts of the branch and bound algorithm. The essence of the algorithm is as follows:

Solve the linear relaxation of the problem. If the solution is integer, then we are done. Otherwise1.

Branch and Bound http://mat.gsia.cmu.edu/orclass/integer/node13.html

3 of 5 18.2.2010 21:47

create two new subproblems by branching on a fractional variable.
A subproblem is not active when any of the following occurs:

You used the subproblem to branch on,1.
All variables in the solution are integer,2.
The subproblem is infeasible,3.
You can fathom the subproblem by a bounding argument.4.

2.

Choose an active subproblem and branch on a fractional variable. Repeat until there are no active
subproblems.

3.

That's all there is to branch and bound! Depending on the type of problem, the branching rule may change
somewhat. For instance, if x is restricted to be integer (but not necessarily 0 or 1), then if x=4.27 your would
branch with the constraints and (not on x=4 and x=5).

In the worst case, the number of subproblems can get huge. For many problems in practice, however, the
number of subproblems is quite reasonable.

For an example of a huge number of subproblems, try the following in LINGO:

model:
 sets:
 a /1..17/: x;
 endsets

 max = -x0 + @sum(a: 2 * x);
 x0 + @sum(a: 2 * x) < 17;
 @for (a: @bin(x));
end

Note that this problem has only 18 variables and only a single constraint. LINDO looks at 48,619
subproblems, taking about 20 minutes on a Sun Sparc workstation, before deciding the optimal objective is
16. LINGO on a 16MHz 386 PC (with math coprocessor) looks at 48,000+ subproblems and takes about
five hours. CPLEX on a Sun SPARC 10 takes about 50 seconds to examine 61,497 subproblems (counting
those that are fathomed without solving the LP). The 100 variable version of this problem would take about

 subproblems or about years (at 1000 subproblems per second). Luckily, most problems take

far less time.

Branch and Bound http://mat.gsia.cmu.edu/orclass/integer/node13.html

4 of 5 18.2.2010 21:47

ne previo conten

Next: Cutting Plane Techniques Up: Solving Integer Programs Previous: Relationship to Linear
Programming

Michael A. Trick
Sun Jun 14 12:49:07 EDT 1998

Branch and Bound http://mat.gsia.cmu.edu/orclass/integer/node13.html

5 of 5 18.2.2010 21:47

(Ova stranica je ostavljena prazna)

	Grananje i ogranicavanje2.pdf
	Grananje i ogranicavanje1.pdf

