9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS—A SAMPLE PROBLEM

Whereas the simplex method is effective for solving linear programs, there is no single technique for ¢
integer programs. Instead, a number of procedures have been developed, and the performance of any|
technique appears to be highly problem-dependent. Methods to date can be classified broadly as ft
one of three approaches:

i) enumeration techniques, including the branch-and-bound procedure;
i) cutting-plane techniques; and
iii) group-theoretic techniques.

In addition, several composite procedures have been proposed, which combine techniques using s
these approaches. In fact, there is a trend in computer systems for integer programming to include a
of approaches and possibly utilize them all when analyzing a given problem. In the sections to follc
shall consider the first two approaches in some detail. At this point, we shall introduce a specific pt
and indicate some features of integer programs. Later we will use this example to illustrate and moti
solution procedures. Many characteristics of this example are shared by the integer version of the ¢
molder problem presented in Chapter 1.

The problem is to determing® where:

Z* = maxz = 5xq + 8xo,



subject to:

X1+ X2
5X1 + 9o

6,
45,
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X1,X2 >0 and integer
The feasible region is sketched in Fig. 9.8. Dots in the shaded region are feasible integer points.
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Figure 9.8 An integer programming example.

If the integrality restrictions on variables are dropped, the resulting problem is a linear program. W
call it the associated linear programWe may easily determine its optimal solution graphically. Table
depicts some of the features of the problem.

Table 9.1 Problem features.

Nearest
Continuous Round feasible | Integer
optimum off point optimum
x1| 9=225 2 2 0
xp | =375 4 3 5
z 41.25 Infeasible 34 40

Observe that the optimal integer-programming solution is not obtainexdibgingthe linear-programming
solution. The closest point to the optimal linear-program solution is not even feasible. Also, note tt
nearest feasible integer point to the linear-program solution is far removed from the optimal integer
Thus, itis not sufficient simply to round linear-programming solutions. In fact, by scaling the righthanc
and cost coefficients of this example properly, we can construct a problem for which the optimal ir
programming solution lies as far as we like from the rounded linear-programming solution, inzeitiee
or distance on the plane.

In an example as simple as this, almost any solution procedure will be effective. For instance, we
easily enumerate all the integer points with< 9, X2 < 6, and select the best feasible point. In practice,
number of points to be considered is likely to prohibit such an exhaustive enumeration of potentially fe
points, and a more sophisticated procedure will have to be adopted.
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Figure 9.9 Subdividing the feasible region.
9.5 BRANCH-AND-BOUND

Branch-and-bounds essentially a strategy of “divide and conquer.” The idea is to partition the feas
region into more manageable subdivisions and then, if required, to further partition the subdivisiol
general, there are a number of ways to divide the feasible region, and as a consequence there are ar
branch-and-bound algorithms. We shall consider one such technique, for problems with only binary va
in Section 9.7. For historical reasons, the technique that will be described next usually is referréuetc
branch-and-bound procedure.

Basic Procedure

An integer linear program is a linear program further constrained by the integrality restrictions. Thu:
maximization problem, the value of the objective function, at the linear-program optimum, will always
upper bound on the optimal integer-programming objective. In addition, any integer feasible point is
a lower bound on the optimal linear-program objective value.

The idea of branch-and-bound is to utilize these observations to systematically subdivide the
programming feasible region and make assessments of the integer-programming problem based uf
subdivisions. The method can be described easily by considering the example from the previous
At first, the linear-programming region is not subdivided: The integrality restrictions are dropped ar
associated linear program is solved, giving an optimal vatué&rom our remark above, this gives the upp
bound orz*, z* < 20 = 41;11. Since the coefficients in the objective function are integraiust be integral
and this implies that* < 41.

Next note that the linear-programming solution kas= 24—11 andxp = 3%. Both of these variables mus
be integer in the optimal solution, and we can divide the feasible region in an attemakéeither integral.
We know that, in any integer programming solutiggmust be either an integer 3 or an integep 4. Thus,
our first subdivision is into the regions whexg < 3 andx, > 4 as displayed by the shaded regiansand
L, in Fig. 9.9. Observe that, by making the subdivisions, we have excluded the old linear-program sc
(If we selectedk; instead, the region would be subdivided with< 2 andx; > 3.)

The results up to this point are pictured conveniently ineanimeration tregFig. 9.10). HerelLg
represents the associated linear program, whose optimal solution has been included witQibakeand
the upper bound om* appears to the right of the box. The boxes below correspond to the new subdivi
the constraints that subdivideg) are included next to the lines joining the boxes. Thus, the constraiis c
are those of_g together with the constraint > 4, while the constraints df, are those ot g together with
the constraink, < 3.

The strategy to be pursued now may be apparent: Simply treat each subdivision as we did the
problem. Considek ; first. Graphically, from Fig. 9.9 we see that the optimal linear-programming solu
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Figure 9.10 Enumeration tree.

Figure 9.11 Subdividing the regiort. 1.

lies on the second constraint wika = 4, giving X1 = %(45 —94)) = % and an objective value =
5(§)+8(4) = 41. Sincex, is notinteger, we subdivide; further, into the regionk 3 with x; > 2 andL 4 with
x1 < 1. Lzisaninfeasible problem and so this branch of the enumeration tree no longer needsto be con

The enumeration tree now becomes that shown in Fig. 9.12. Note that the constraints of any sub
are obtained by tracing back tq. For exampleL 4 contains the original constraints together with> 4
andxi; < 2. The asterisk«) below boxL 3 indicates that the region need not be subdivided or, equivale
that the tree will not be extended from this box.

At this point, subdivisiond., and L4 must be considered. We may select one arbitrarily; howe
in practice, a number of useful heuristics are applied to make this choice. For simplicity, let us sele
subdivision most recently generated, here Analyzing the region, we find that its optimal solution has

X1 =1, X, = §(45-5) = L.

Sincexy is not integerL 4 must be further subdivided intios with xo < 4, andLg with x» > 5, leavingL »,
Ls andLg yet to be considered.

TreatingLs first (see Fig. 9.13), we see that its optimum Ras= 1, xo = 4, andz = 37. Since this is
the best linear-programming solution fiog and the linear program contains every integer solutidbsimno
integer point in that subdivision can give a larger objective value than this point. Consequently, other
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Figure 9.13 Final subdivisions for the example.

in Ls need never be considered anglneed not be subdivided further. In fact, singe= 1, xo = 4,z = 37,
is a feasible solution to the original probleai, > 37 and we now have the bounds 37z* < 41. Without
further analysis, we could terminate with the integer solutigr= 1, x = 4, knowing that the objective
value of this point is within 10 percent of the true optimum. For convenience, the lower zbun@7 just
determined has been appended to the right oL.thbox in the enumeration tree (Fig. 9.14).

Althoughx; = 1, xo = 4 is the best integer point ibs, the regionsL, and Lg might contain better
feasible solutions, and we must continue the procedure by analyzing these regibgstha only feasible
pointisx; = 0, Xo = 5, giving an objective value = +40. This is better than the previous integer point a
thus the lower bound or* improves, so that 48 z* < 41. We could terminate with this integer solutic
knowing that it is within 2.5 percent of the true optimum. Howe\ercouldcontain an even better intege
solution.

The linear-programming solution i, hasx; = Xo = 3 andz = 39. This is the best integer point i
L, but is not as good as; = 0, x» = 5, so the later point (il.g) must indeed be optimal. It is interestin
to note that, even if the solution tio, did not givex; and xy integer, but hadz < 40, then no feasible
(and, in particular, no integer point) iny could be as good ag = 0, x = 5, with z = 40. Thus, again
x1 = 0, X2 = 5 would be known to be optimal. This observation has important computational implicat
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since it is not necessary to drive every branch in the enumeration tree to an integer or infeasible solut
only to an objective value below the best integer solution.

The problem now is solved and the entire solution procedure can be summarized by the enumera
in Fig. 9.15.
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Further Considerations
There are three points that have yet to be considered with respect to the branch-and-bound procedu
i) Can the linear programs corresponding to the subdivisions be solved efficiently?

i) Whatisthe bestway to subdivide a given region, and which unanalyzed subdivision should be con:
next?



iif) Canthe upper boundz(= 41, in the example) on the optimal valeieof the integer program be improve:
while the problem is being solved?

The answer to the first question is an unqualifled When moving from a region to one of its subdivision
we add one constraint that is not satisfied by the optimal linear-programming solution over the parent
Moreover, this was one motivation for the dual simplex algorithm, and it is natural to adopt that algc
here.

Referring to the sample problem will illustrate the method. The first two subdividig@sdL in that
example were generated by adding the following constraints to the original problem:

For subdivision x> 4 or Xo—S3=4 (s3> 0);
For subdivision2 x> <3 or Xo +54=3 (54>0).

In either case we add the new constraint to the optimal linear-programming tableau. For subdivision
gives:

5 3 _ _a11 .
(=2 — 251 — 3% = —41; Constraints from the
X1 +9s -1 = 1 optimal canonical
form
o-Sstle = ¥
—Xo + 853 = —4, Added constraint

X1, X2, S1, &2, 8 > 0,

wheres; ands, are slack variables for the two constraints in the original problem formulation. Note
the new constraint has been multiplied by, so that the slack variabk can be used as a basic variabl
Since the basic variabbe, appears with a nonzero coefficient in the new constraint, though, we must
to isolate this variable in the second constraint to re-express the system as:
(—2) —351 —3% = —413,
X1 +2s —Is = 3
Xo =281 +3% .
+i%2 +8 = -3,

X1, X2, S1, S2, S3 > 0.

These constraints are expressed in the proper form for applying the dual simplex algorithm, which wil
next to makes; the basic variable in the third constraint. The resulting system is given by:

(-2) — 5 - s =-41
X1 +i +2m = 2,

X2 -3 = 4

SL—5% —g = &,

X1, X2, S1, S, s3> 0.

This tableau is optimal and gives the optimal linear-programming solution over the tegamx, = %, Xo =
4, andz = 41. The same procedure can be used to determine the optimal solutign in

Whenthe linear-programming problem contains many constraints, this approach for recovering an «
solution is very effective. After adding a new constraint and making the slack variable for that con:
basic, we always have a starting solution for the dual-simplex algorithm with only one basic variable ne
Usually, only a few dual-simplex pivoting operations are required to obtain the optimal solution. Usir
primal-simplex algorithm generally would require many more computations.
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Issue (ii) raised above is very important since, if we can make our choice of subdivisions in such
as to rapidly obtain a good (with luck, near-optimal) integer solutidchen we can eliminate many potenti
subdivisions immediately. Indeed, if any region has its linear programming ¥atué, then the objective
value of no integer point in that region can exceeand the region need not be subdivided. There is
universal method for making the required choice, although several heuristic procedures have been su
such as selecting the subdivision with the largest optimal linear-programming'value.

Rules for determining which fractional variables to use in constructing subdivisions are more ¢
Recall that any fractional variable can be used to generate a subdivision. One procedure utilized is
ahead one step in the dual-simplex method for every possible subdivision to see which is most promisi
details are somewhat involved and are omitted here. For expository purposes, we have selected the f
variable arbitrarily.

Finally, the upper bounzlon the value* of the integer program can be improved as we solve the probl
Suppose for example, that subdivisibpwas analyzed before subdivisiohg or L in our sample problem.
The enumeration tree would be as shown in Fig. 9.16.

At this point, the optimal solution must lie in eithér or L4. Since, however, the largest value fc
any feasible point in either of these regions i§,4the optimal value for the problert cannotexceedflog.
Because* must be integral, this implies that < 40 and the upper bound has been improved from the ve
41 provided by the solution to the linear programlan In general, the upper bound is given in this way
the largest value of any “hanging” box (one that has not been divided) in the enumeration tree.

Summary

The essentialidea of branch-and-bound is to subdivide the feasible region to demaeholz < z* < Zon z*.
For a maximization problem, the lower bount the highest value of any feasible integer point encounte
The upper bound is given by the optimal value of the associated linear program or by the largest ve
the objective function at any “hanging” box. After considering a subdivision, we rbrestchto (move to)
another subdivision and analyze it. Alsogither

T One common method used in practice is to consider subdivisions on a last-generated—first-analyzed basis.
this rule in our previous example. Note that data to initiate the dual-simplex method mentioned above must be st
each subdivision that has yet to be analyzed. This data usually is stored in a list, with new information being adde
tOP of the list. When required, data then is extracted fronidpef this list, leading to the last-generated—first-analyz
rule. Observe that when we subdivide a region into two subdivisions, one of these subdivisions will be analyze
The data required for this analysis already will be in the computer core and need not be extracted from the list.



i) the linear program ovel j is infeasible,

ii) the optimal linear-programming solution ovkj is integer;or

iii) the value of the linear-programming solutiah overL; satisfiesz) < z (if maximizing),

thenLj need not be subdivided. In these cases, integer-programming terminology sal$ tie been
fathomed' Case (i) is termed fathoming by infeasibility, (ii) fathoming by integrality, and (iii) fathoming

bounds.

The flow chart in Fig. 9.17 summarizes the general procedure.

Solve linear
program over
subdivision.

N

Select subdivision
not yet analyzed
completely.

Figure 9.17 Branch-and-bound for integer-programming maximization.

T To fathomis defined as “to get to the bottom of; to understand thoroughly.” In this chaattigmecdmnight be more
appropriately defined as “understood enough or already considered.”
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Branch and Bound

We will explain branch and bound by using the capital budgeting example from the previous section. In that
problem, the model is
Maximize 8z, + 1lz, + 623 + 424
subject to 5z, + Ty + 43 + 334 < 14
z; € {0,1} 5 =1,...4.

The linear relaxation solutionisz; = 1,2y = 1,23 = 0.5, 24 = 0 with a value of 22. We know that no
integer solution will have value more than 22. Unfortunately, since 3 is not integer, we do not have an
integer solution yet.

We want to force &3 to be integer. To do so, we branch on z3, creating two new problems. In one, we will
add the constraint zz = (). In the other, we add the constraint zz = 1. This is illustrated in Figure 2.

Fractional

z=122
Tz = 0 T3z = 1
Fractional Fractional
z = 21.65 z = 21.85

Figure 2: First Branching

Note that any optimal solution to the overall problem must be feasible to one of the subproblems. If we
solve the linear relaxations of the subproblems, we get the following solutions:

e z3 = (:objective 21.65,¢; = 1,29 = 1,23 = 0,24 = 0.667;
e £3 — 1l:0bjective21.85,z;, = 1,2, =0.714 23 = 1,24 = 0.

At this point we know that the optimal integer solution is no more than 21.85 (we actually know it is less
than or equal to 21 (Why?)), but we still do not have any feasible integer solution. So, we will take a
subproblem and branch on one of its variables. In general, we will choose the subproblem as follows:

o We will choose an active subproblem, which so far only means one we have not chosen before, and
¢ We will choose the subproblem with the highest solution value (for maximization) (lowest for



minimization).

In this case, we will choose the subproblem with zz = 1, and branch on & . After solving the resulting

subproblems, we have the branch and bound tree in Figure 3.

Fractional
z =22

T3z = U T3z = 1
Fractional Fractional
z = 21.65 z=21.85

3 = 1132 = U
Integer
z=18

INTEGER

Tz — 11 Ty = 1
Fractional
z=21.8

Figure 3: Second Branching

The solutions are:

ez3=1,2, = 0:0bjective18,z, =1, 8y =0,23 = 1,2, = 1;

ezy=1,29 = 1:objective21.8,2; = 0.6,z =1, 23 =1,2, = 0.

We now have a feasible integer solution with value 18. Furthermore, since the ¢z = 1, &, = 0 problem

gave an integer solution, no further branching on that problem is necessary. It is not active due to integrality
of solution. There are still active subproblems that might give values more than 18. Using our rules, we will
branch on problemzz = 1, z5 = 1 by branching on , to get Figure 4.
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Figure 4: Third Branching
The solutions are:

ezy=1,2p=1,z, = 0:0bjective2l, 2, =0,z =1,23 =1,24 = 1;

ez3 = 1,2y = 1,2, = 1:infeasible.

Our best integer solution now has value 21. The subproblem that generates that is not active due to
integrality of solution. The other subproblem generated is not active due to infeasibility. There is still a
subproblem that is active. It is the subproblem with solution value 21.65. By our "“round-down" result, there
is no better solution for this subproblem than 21. But we already have a solution with value 21. It is not
useful to search for another such solution. We can fathom this subproblem based on the above bounding
argument and mark it not active. There are no longer any active subproblems, so the optimal solution value
is 21.

We have seen all parts of the branch and bound algorithm. The essence of the algorithm is as follows:

1. Solve the linear relaxation of the problem. If the solution is integer, then we are done. Otherwise



create two new subproblems by branching on a fractional variable.
2. A subproblem is not active when any of the following occurs:
1. You used the subproblem to branch on,
2. All variables in the solution are integer,
3. The subproblem is infeasible,
4. You can fathom the subproblem by a bounding argument.

3. Choose an active subproblem and branch on a fractional variable. Repeat until there are no active
subproblems.

That's all there is to branch and bound! Depending on the type of problem, the branching rule may change
somewhat. For instance, if x is restricted to be integer (but not necessarily 0 or 1), then if x=4.27 your would
branch with the constraintsz < 4andz = 5 (not on x=4 and x=5).

In the worst case, the number of subproblems can get huge. For many problems in practice, however, the
number of subproblems is quite reasonable.

For an example of a huge number of subproblems, try the following in LINGO:

model :
sets:
a/1..17/: x;
endsets

max = -x0 + @sum(a: 2 * X);
X0 + @sum(a: 2 * x) < 17;
@for (a: @bin(x));

end

Note that this problem has only 18 variables and only a single constraint. LINDO looks at 48,619
subproblems, taking about 20 minutes on a Sun Sparc workstation, before deciding the optimal objective is
16. LINGO on a 16MHz 386 PC (with math coprocessor) looks at 48,000+ subproblems and takes about
five hours. CPLEX on a Sun SPARC 10 takes about 50 seconds to examine 61,497 subproblems (counting
those that are fathomed without solving the LP). The 100 variable version of this problem would take about

10% subproblems or about 3 x 10'® years (at 1000 subproblems per second). Luckily, most problems take

far less time.

Exercise 5 {Optional) Solve the following problem by the branch and bound
algorithm. For convenience, always select =, as the branching variable when
both =, and =, are fractional.

Mazimize z, + 2
subject to 2z, + bz < 16
bz, + 5z, < 30
€.,y > 0 and infeger.

Exercise 6 {Optional) Repeat the preceeding ezercise assuming that ©, only

is restricted to integer values.



Exercise 7 {Optional) Consider the following cargo-loading problem, where
five items are to be loaded on a vessel. The weights w; and the volume v; per
unit of the different items as well as their corresponding values r; ave tabulated
as follows.

Hem 1 || w;

i Yi Ty
7 5 1 4
2 § & 7
J g 6 0
4 2 4§ &
J T 4 4

The mazimum cargo weight and volume are given by W = 112 and V =
109, respectively. It is required to determine the most valuable cargo load in
discrete units of each item. Formulate the problem as an integer program and

solve by LINDO.
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