2.6.3. Celobrojno programiranje

Problemi celobrojnog programiranja u opštem slučaju svode se na reŠavanje zadataka linearnog i nelinearnog programiranja gde se kao poseban uslov postavlja da brojne vrednosti promenlijivih moraju biti celi nenegativni brojevi. Kao posebna klasa zadataka celobrojnog programiranja izdvajaju se zadaci kombinatornog karaktera, gde promenljive u matematičkom modelu mogu uzeti samo vrednost " 1 " ili " 0 ".

Problem celobrojnosti promenljivih namece se vrlo često kod odredene klase realnih problema. U sledecim primerima bice data opsta formulacija nekih tipicnih zadataka celobrojnog programiranja.

53. Zadatak

Preduzece proizvodi n različitih tipova mašina. Za realizaciju proizvodnje potrebno je m različitih vrsta resursa sa kojima se raspolaže u ograničenim kolixinama $a_{1}, a_{2}, \ldots, a_{i}, \ldots, a_{m}$. Poznato je:
a_{ij} - normativ utroška i-tog resursa za proizvodnju jedne j -te masine,
$c_{j}-$ dobit ostvarena isporukom jedne mašine j-tog tipa $(j=1,2, \ldots, n)$.

Pretpostavlja se da na kraju planskog perioda nije poželjno imati nedovršenih mašina.

Formirati matematički model problema, pod uslovom da preduzeće želi ostvariti maksimalnu dobit od proizvodnje.

Rešenje. Matematički model sačinjava funkcija cilja koja definiše ukupnu dobit koja ce se ostvariti u planskom periodu,

$$
F(X)=\sum_{j=1}^{n} c_{j} x_{j}=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{j} x_{j}+\ldots+c_{n} x_{n}
$$

koja zavisi od raspoloživih resursa, tj. uslovi u kojima se ostvaruje proizvodnja definisani su sistemom jednačina

$$
\begin{array}{ll}
\sum_{j=1}^{n} a_{i j} x_{j}=a_{i}, & i=1,2, \ldots, m \\
x_{j} \geqslant 0, & j=1,2, \ldots, n .
\end{array}
$$

Brojne vrednosti promenljivih mogu biti samo celi brojevi.

54. Zadatak

Proizvodni proces karakteriše se sa n različitih vrsta poslova $(j=1,2, \ldots, n)$, odnosno radnih operacija. U planskom periodu kvantitativne mere za pojedine operacije su $b_{1}, b_{2}, \ldots, b_{j}, \ldots, b_{n}$. Takođe, zadata je matrica $\left\|r_{i j}\right\|$ gde je $r_{i j}$ produktivnost i-tog tipa masine na j-tom poslu, zatim, matrica $\left\|c_{i j}\right\|, g d e ~ s u c_{i j}-$ troškovi obavljanja j-tog posla na mašini i-tog tipa, kao i cene c_{i} jedne mašine i-tog. tipa.

Formirati matematicki model zadatka iznalaženja optimalnog masinskog parka, (tj. brojni iznos makina za svaki tip), kao i odredivanja optimalne raspodele masina na odretene poslove pod uslovom da se ostvare minimalni ukupni troskovi realizacije proizvodnog procesa.

Resenje. Matematički model problema formira se tako sto se uvode promenlivive:
y_{i} - ukupan broj masina i-tog tipa, $i=1,2, \ldots, m$.
\mathbf{x}_{ij} - broj masina i-tog tipa koje se koriste za izvrsenje j-te vrste posla.
Oと̌igledno je da promenljive y_{i} moraju biti celi brojevi, dok promenljive $x_{i j}$ ne moraju ako se produktivnost maşina $r_{i j}$ nije deljiva bez ostatka saodgovarajucim vrednostima b_{j}.

Polazeci od navedenih oznaka ukupne troškove u planskom periodu možemo definisati sledecim izrazom

$$
(\min) F(X, Y)=\sum_{i=1}^{m} c_{i} y_{i}+\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i j} x_{i j} .
$$

Potrebne kolǐine mašina definisane su sledeCim sistemom jednačina

$$
\begin{array}{lc}
\sum_{i=1}^{m} r_{i j} x_{i j}=b_{j}, & (j=1,2, \ldots, n) \\
\sum_{j=1}^{n} x_{i j}=y_{i}, & (i=1,2, \ldots, m)
\end{array}
$$

gde su promenljive $\mathrm{x}_{\mathrm{ij}} \geqslant 0$, dok su $\mathrm{y}_{\mathrm{i}} \geqslant 0 \mathrm{i}$ celobrojne vrednosti.
Zadatak se sastoji u tome da se odrede takve celobrojne vrednosti promenljivih y_{i} i vrednosti promenljivih $X_{i j}$ za koje će funke!̣d $F(X, Y)$ imati minimalnu vrednost, a ogranicenja neće biti narušena.

55. Zadatak

Planskom organu pomorskog transporta stoje na raspolaganju m razlicitih tipova brodova u kolicinama od $q_{1}, q_{2}, \ldots, q_{i}, \ldots, q_{m}$. Na svakom od brodova postoji n razlicitih prostora za utovar robe $(\mathrm{j}=1,2, \ldots, \mathrm{n})$, čiji su kapaciteti u
odnosu na vrstu robe $\mathrm{d}_{\mathrm{ijk}}$ (podrazumeva se da za odredene vrednosti indeksa $\mathrm{i}-\mathrm{j}$ velǐina $\mathrm{d}_{\mathrm{ijk}}$ može biti jednaka nuli). Potrebno je prevesti r razlicitih vrsta robe u kolixinama $b_{1}, b_{2}, \ldots, b_{k}, \ldots \ldots, b_{r}$.

Formirati matematicki model zadataka odredivanja optimalnog sastava brodova, ako su troskkovi eksploatacije jednog broda i-tog tipa c_{i}.

Resenje. Optimalni sastav brodova formira se na bazi minimizacije ukupnih troskova eksploatacije, tj. treba odrediti brojne vrednosti skupa promenljivih y_{1}, $y_{2}, \ldots, y_{i}, \ldots, y_{m}$, za koje funkcija

$$
F(Y)=\sum_{i=1}^{m} c_{i} y_{i}
$$

ima minimalnu vrednost.
Ako sa \mathbf{x}_{jk} oznacimo broj jedinica robe k -te vrste utovarene $\mathbf{u j} \mathbf{j}$ ti prostor, tada se ogranicenja mogu definisati na sledeci nacin

$$
\begin{aligned}
& \sum_{i=1}^{m} d_{i j k} y_{i}-x_{j k} \geqslant 0, \\
& \sum_{j=1}^{n} x_{j k}=b_{k} \\
& 0 \leqslant y_{i} \leqslant q_{i} i \quad x_{j k} \geqslant 0
\end{aligned}
$$

gde indeksi uzimaju vrednosti: $\mathrm{i}=1,2, \ldots, \mathrm{~m} ; \mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{i} \mathrm{k}=1,2, \ldots, \mathrm{r}$.
Promenljive u modelu $\mathbf{y}_{\mathbf{i}}$ i \mathbf{x}_{jk} moraju biti celi brojevi

56. Zadatak

Problem planiranja upotrebe transportnih sredstava može se definisati na sledeci način. Postoji m razlicitih vrsta transportnih sredstava, koja se mogu koristiti u ograničenom broju casova, $a_{1}, a_{2}, \ldots, a_{i}, \ldots, a_{m}$. Ova sredstva treba upotrebiti na n razlicitih marš-ruta, pri cemu se na svakoj mař-ruti mora ostvariti odredeni broj putovanja, sto se definise vrednostima $b_{1}, b_{2}, \ldots, b_{i}, \ldots, b_{n} . Z_{a}$ izvrsenje jednog putovanja i -tom masinom naj-toj mař-ruti potrebno je t_{ij} Casova, uz troskove c_{ij}.

Formirati matematicki model celobrojnog programiranja, ako se zeli optimalno raspodeliti transportna sredstva tako da troskovi transporta budu minimalni.

Resenje. Ako se sa x_{ij} oznaci broj izvišenih putovanja od strane i -tog transportnog sredstva upotrebljenog na j-toj marš-ruti,tada ce ukupni troškovi transporta biti definisani izrazom,

$$
F(X)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} .
$$

Pri upotrebi transportnih sredstava moraju biti zadovoljena ogranicenja

$$
\begin{array}{ll}
\sum_{j=1}^{n} t_{i j} x_{i j} \leqslant a_{i}, & (i=1,2, \ldots, m) . \\
\sum_{i=1}^{m} x_{i j}=b_{j}, & (j=1,2, \ldots, n)
\end{array}
$$

i opsti uslov da sve promenljive u modelu moraju biti vecte od nule i celobrojne.

2.6.4. Metode rešavanja zadataka celobrojnog̣ programiranja

Za rešavanje zadataka celobrojnog programiranja postoje razlicite metode koje baziraju na svojstvima pojedinih klasa zadataka celobrojnog programiranja.

Metoda odsečaka - bazira na sukcesivnom rešavanju konačnog broja specijalno formiranih zadataka linearnog programiranja. Svaki od zadataka formulise se na osnovi prethodnog, dodajuci već postojecim ogranicenjima novo linearno ogranicenje - "odsečak". Ovaj metod bice ilustrovan na konkretnim primerima.

57. Zadatak

Zadatak celobrojnog programiranja svodi se na matematicki model sa funkcijom cilja

$$
(\max) F(X)=x_{1}+4 x_{2}
$$

i uslovima definisanim linearnim ograničenjima,

$$
\begin{aligned}
& -x_{1}+2 x_{2}+x_{3}=2 \\
& 3 x_{1}+2 x_{2}+x_{4}=6 \\
& x_{j} \geqslant 0, \quad j=1,2,3,4
\end{aligned}
$$

Potrebno je naći celobrojne vrednosti promenljivih X_{1}, x_{2}, x_{3} i x_{4} koje obezbeđuju maksimum funkcije $F(X)$, a istovremeno zadovoljavaju i ograničenja, definisana sistemom jednačina.

Rešenje. Algoritam za rešavanje postavljenog zadatka definisan je sa tri nezavisna koraka.

1. korak. U ovom koraku zanemaruje se uslov celobrojnosti i rešava se zadatak linearnog programiranja L_{0}.

Primenom simpleks metode dobija se traženo rešenje, koje je prikazano tabelama 1, 2 i 3.

Tabela 1.

C_{0}	B	x_{0}	1	4	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
0	x_{3}	2	-1	2	1	0
0	x_{4}	6	3	2	0	1
$F_{j}-c_{j}$	0	-1	-4	0	0	

Tabela 2.

C_{0}	B	x_{0}	1	4	0	0
		x_{1}	x_{2}	x_{3}	x_{4}	
4	x_{2}	1	$-1 / 2$	1	$1 / 2$	0
0	x_{4}	4	4	0	-1	1
$F_{j}-c_{j}$	4	-3	0	2	0	

Tabela 3.

C_{0}	x	x_{0}	1	4	0	0
		x_{1}	x_{2}	x_{3}	x_{4}	
4	x_{2}	$3 / 2$	0	1	$3 / 8$	$1 / 8$
1	x_{1}	1	1	0	$-1 / 4$	$1 / 4$
$\mathrm{~F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$		7	0	0	$5 / 4$	$3 / 4$

Dobijeno rešenje zadatka L_{0} je

$$
X^{0}=\left(1 ;-\frac{3}{2} ; 0 ; 0\right) \text { i } F(X)=7
$$

Kako ovo rešenje nije celobrojno, prelazi se na drugi korak.
2. korak. Na osnovu poslednje simpleks tabele u 1. koraku formira se "odsečak" - novo linearno ograniČenje sa kojim se proگ̌iruje simpleks tabela i formira novi zadatak linearnog programiranja L_{1}.

U opštem slučaju novo ograničenje se formira na sledeći način. Ako se uvedu oznake:
\{a\}-decimalni deo broja a,
[a] - najveci ceo broj manji ili jednak datom broju a,
k - indeksi promenljivih koje u poslednjoj simpleks tabeli ne pripadaju bazi,
s - broj reda u poslednjoj simpleks tabeli sa najvecom vrednoscu $a_{\text {so }}$,
tada se novo ograničenje (Gomory-jev odsečak) može pisati u obliku

$$
\left\{a_{s o}\right\}-\sum_{k}\left\{a_{s k}\right\} \cdot \mathbf{x}_{\mathbf{k}} \leqslant 0
$$

U gornjem primeru je:

$$
\begin{gathered}
\left\{a_{\text {so }}\right\}=\left\{\frac{3}{2}\right\}=\frac{1}{2}, \quad k=3 i 4 \\
\left\{a_{33}\right\}=\left\{\frac{3}{8}\right\}=\frac{3}{8} \text { i }\left\{a_{34}\right\}=\left\{\frac{1}{8}\right\}=\frac{1}{8}
\end{gathered}
$$

Prema tome, ograničenje je oblika

$$
\frac{1}{2}-\frac{3}{8} x_{3}-\frac{1}{8} x_{4} \leqslant 0
$$

a uvođenjem nove izravnavajuce promenljive dobija se

$$
\frac{3}{8} x_{3}+\frac{1}{8} x_{4}-u_{1}=\frac{1}{2}
$$

ili ako jednačinu pomnožimo sa -1 dobija se izraz

$$
-\frac{3}{8} x_{3}-\frac{1}{8} x_{4}+u_{1}=-\frac{1}{2}
$$

3. korak. Dodajuci novo dobijeno ograničenje u poslednju simpleks tabelu dobija se početna simpleks tabela zadatka L_{1}.

Tabela 4.

			1	4	0	0	0
	B		x_{1}	x_{2}	x_{3}	x_{4}	u_{1}
4	x_{2}	$3 / 2$	0	1	$3 / 8$	$1 / 8$	0
1	x_{1}	1	1	0	$-1 / 4$	$1 / 4$	0
0	u_{1}	$-1 / 2$	0	0	$-3 / 8$	$-1 / 8$	1
$\mathrm{~F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$	7	0	0	$5 / 4$	$3 / 4$	0	

Tabela 4 ne sadrži moguće rešenje problema(jer je $u_{1}=-\frac{1}{2}$). Cilj dalje transformacije je dobijanje početnog mogućeg rešenja. Zato se u redu u_{1} bira kolona r sa najvecim negativnim brojem i proverava se da li se dobija

Za ono i koje odgovara negativnoj promenljivoj u_{1}. Ako je uslov ispunjen tada u novu bazu ulazi promenljiva X_{r}. U slučaju da ovo nije ispunjeno ide se na novu kolonu sa negativnim brojem.

U ovom primeru promenljiva x_{3} ulazi u sledeće bazno rešenje, koje je istovremeno i moguce rešenje (tabela 5).

Tabela 5.

	C_{0}	B	x_{0}	1	4	0	0							
		x_{2}	x_{3}	x_{4}	u_{1}									
4	x_{2}	1	0	1	0	0	1							
1	x_{1}	$4 / 3$	1	0	0	$1 / 3$	$-2 / 3$							
0	x_{3}	$4 / 3$	0	0	1	$1 / 3$	$-8 / 3$							
$\mathrm{~F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$									$16 / 3$	0	0	0	$1 / 3$	$10 / 3$

U tabeli 5 dobijeno je optimalno rešenje problema koje nije celobrojno. Prema tome, vraćamo se na korak 2.
2. korak. Formira se novo ograničenje i novi zadatak L_{2}. Ograničenje se formira na bazi reda x_{1}, otuda je

$$
\begin{gathered}
\left\{\frac{4}{3}\right\}-\left\{\frac{1}{3}\right\} \cdot x_{4}-\left\{-\frac{2}{3}\right\} \cdot u_{1} \leqslant 0 \\
\text { Kako je }\left\{\frac{4}{3}\right\}=\frac{1}{3},\left\{\frac{1}{3}\right\}=\frac{1}{3} \quad i \\
\left\{-\frac{2}{3}\right\}=-\frac{2}{3}-\left\{-\frac{2}{3}\right\}=-\frac{2}{3}-(-1)=\frac{1}{3}
\end{gathered}
$$

to ce ograničenje biti sledećeg oblika

$$
\frac{1}{3}-\frac{1}{3} x_{4}-\frac{1}{3} u_{1}+u_{2}=0
$$

gde je u_{2} nova izravnavajuća promenljiva. Prema tome, konačna forma ograničenja je

$$
-\frac{1}{3} x_{4}-\frac{1}{3} u_{1}+u_{2}=-\frac{1}{3} .
$$

Napomena. Pri odretivanju decimalnog dela negativnog melovitog broja treba imati u vidu opsti izraz

$$
\{-\mathbf{a}\}=-\mathbf{a}-[-\mathbf{a}] .
$$

3. korak. Dodajuci napred formirano ogranicenje iz prethodnog koraka u posledñju simpleks tabelu (tabela 5) dobija se pocetna simpleks tabela za ovaj korak.

Tabela 6.

Co_{0}	B	X_{0}	1	4	0	0	0	0
			x_{1}	x_{2}	x_{3}	X_{4}	u_{1}	\mathbf{u}_{2}
4	x_{2}	1	0	1	0	0	0	0
1	x_{1}	4/3	1	0	0	1/3	$-2 / 3$	0
0	x_{3}	4/3	0	0	1	1/3	$-8 / 3$	0
0	\mathbf{u}_{2}	-1/3	0	0	0	-1/3	$-1 / 3$	1.
$\mathrm{F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$		16/3	0	0	0	1/3	10/3	0

Bazno rešenje u tabeli 6 nije moguce, otuda se za kolone x_{4} određuje

$$
(\min)\left\{\begin{array}{rc}
\frac{4}{3}: & \frac{1}{3}=4 \\
\frac{4}{3}: & \frac{1}{3}=4 \\
-\frac{1}{3}: & -\frac{1}{3}=1
\end{array}\right\}=1
$$

Kako minimum odgovara redu u_{2} to se u sledećoj iteraciji može dobiti moguće rešenje zadatka, koje je dato u tabeli 7.

Tabela 7.

C_{0}	B	x_{0}	1	4	0	0	.0	0
		x_{1}	x_{2}	x_{3}	x_{4}	u_{1}	u_{2}	
4	x_{2}	1	0	1	0	0	1	0
1	x_{1}	1	1	0	0	0	-1	1
0	x_{3}	1	0	0	1	0	-3	1
0	x_{4}	1	0	0	0	1	1	-3
$F_{j}-c_{j}$	5	0	0	0	0	3	1	

Novo dobijeno moguce rešenje je optimalno u smislu kriterijuma simpleks metoda. Takođe, dobijeno rešenje je optimalno za napred postavljeni zadatak celobrojnog programiranja, jer su vrednosti bazni promenljivih celobrojne, tj.

$$
\mathrm{x}_{1}=1, \quad \mathrm{x}_{2}=1, \quad \mathrm{x}_{3}=1 \mathrm{i} \quad \mathrm{x}_{4}=1
$$

Vrednost funkcije $\mathbf{F}(\mathbf{X})$ je

$$
\max F(X)=5
$$

58. Zadatak

Naći rešenje zadataka celobrojnog programiranja:

$$
\begin{aligned}
& \text { a) }(\max) F(X)=10+2 x_{1}+2 x_{2} \\
& 2 x_{1}+x_{2}+x_{3}=5 \\
& 2 x_{1}+3 x_{2}+x_{4}=9
\end{aligned}
$$

b) $(\max) F(X)=3 x_{1}+4 x_{2}$

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \leqslant 8 \\
& x_{1}+4 x_{2} \leqslant 10 .
\end{aligned}
$$

c) $(\max) F(X)=21 x_{1}+11 x_{2}$

$$
7 x_{1}+4 x_{2}+x_{3}=13,
$$

gde sve promenlijive u modelima moraju biti vecte ili jednake nuli i celi brojevi.

Rešenje. Primenom metoda odseट̌aka dobijaju se rešenja:
a) Zadatak ima visestruko optimalno celobrojno rešenje:

$$
\begin{array}{rlll}
\text { 1. } x_{1}=0, & x_{2}=3, & x_{3}=2, & x_{4}=0 . \\
\text { 2. } x_{1}=1, & x_{2}=2, & x_{3}=1, & x_{4}=1 . \\
\text { 3. } x_{1}=2, & x_{2}=1, & x_{3}=0, & x_{4}=2 . \\
(\max) F(X)=16 . & &
\end{array}
$$

b) Optimalno celobrojno rešenje je:

$$
\mathrm{x}_{1}=1, \quad \mathrm{x}_{2}=2 \mathrm{i} \quad(\max) \mathrm{F}(\mathrm{X})=11 .
$$

c) Optimalno celobrojno rešenje je:

$$
\begin{aligned}
& x_{1}=0, \quad x_{2}=3, \quad x_{3}=1, \\
& (\max) F(X)=33 .
\end{aligned}
$$

59. Zadatak

$$
(\max) F(X)=6 x_{1}+x_{2}
$$

pod uslovom da je

$$
\begin{aligned}
-2,9 x_{1}+6 x_{2} & \leqslant 17,4 \\
3 x_{1}-x_{2} & \leqslant 1
\end{aligned}
$$

a promenljive $x_{1} \geqslant 0$ i $x_{2} \geqslant 0$ i celi brojevi.

Resenje. Ako se uvedu izrannavajuce promenljive matematicki model se svodi na oblik

$$
\begin{aligned}
& (\max) F(X)=6 x_{1}+x_{2} \\
& -2,9 x_{1}+6 x_{2}+x_{3}=17,4 \\
& 3 x_{1}-x_{2}+x_{4}=1 \\
& x_{j} \geqslant 0, \quad j=1,2,3,4 .
\end{aligned}
$$

Iz dobijenog modela vidi se da promenlijiva x_{3} ne mora biti celobrojna da bi promenljive x_{1} i x_{2} bile celobrojne. U ovom slučaju postupak rešavanja zadatka ima neke specifičnosti u odnosu na prethodni postupak rešavanja zadataka celobrojnog programiranja.

1. korak. U ovom koraku se rešava zadạtak zanemarujuci uslov celobrojnosti. Resienje problema dato je u sledecim simpleks tabelama.

Tabela 1.

	C_{0}	B	x_{0}	6	1	0
			x_{1}	x_{2}	x_{3}	x_{4}
0	x_{3}	17,4	$-2,9$	6	1	0
0	x_{4}	1	3	-1	0	1
$F_{j}-c_{j}$		0	-6	-1	0	0

Tabela 2.

C_{0}	X	X_{0}	6	1	0	0
			x_{1}	x_{2}	x_{3}	X_{4}
0	x_{3}	$\frac{55,1}{3}$	0	$\frac{15,1}{3}$	1	2,9
6	x_{1}	$\frac{1}{3}$	1	$-\frac{1}{3}$	0	1 3
$\mathrm{F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$		2	0	-3	0	2

Tabela 3.

C_{0}	B	x_{0}	6	1	0	0
			x_{2}	x_{3}	x_{4}	
1	x_{2}	3,649	0	1	0,198	0,192
6	x_{1}	1,55	1	0	0,066	0,397
$\mathrm{~F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$		12,947	0	0	0,594	2,576

U poslednjoj tabeli (3), dobijeno je optimalno rešenje. Međutim, promenljive nisu celobrojne.
2. korak U ovom koraku definise se drugi Gomory-jev presek, kao novo ograničenje u modelu

$$
\left\{a_{\text {so }}\right\}-\sum_{k=1}^{m} \alpha_{\text {sk }} \mathbf{x}_{\mathbf{k}} \leqslant 0
$$

gde su $\alpha_{3 k}$ - koeficijenti koji se izračunavaju na osnovu sledećih izraza:

1) Za promenljive koje ne moraju biti celobrojne

$$
\alpha_{s k}=\left\{\begin{array}{l}
a_{s k}, \text { ako je } a_{s k} \geqslant 0, \\
\left.\frac{\left\{a_{\text {so }}\right\}}{1-\left\{a_{\text {so }}\right\}} \cdot l a_{\text {sk }} \right\rvert\,, \text { za } a_{\text {sk }}<0 ;
\end{array}\right.
$$

2) Za promenljive koje moraju biti celobrojne

$$
\alpha_{s k}=\left\{\begin{array}{l}
\left\{a_{s k}\right\}, \text { ako je }\left\{a_{s k}\right\} \leqslant\left\{a_{s o}\right\}, \\
\frac{\left\{a_{s o}\right\}}{1-\left\{a_{s o}\right\}}\left(1-\left\{a_{s k}\right\}\right), \text { ako je }\left\{a_{s k}\right\}>\left\{a_{s o}\right\} .
\end{array}\right.
$$

Kako je

$$
\begin{gathered}
\left\{a_{s o}\right\}=\{3,649\}=0,649 \\
\alpha_{13}=0,198 \quad \text { i } \quad \alpha_{14}=0,192
\end{gathered}
$$

to je ograniXenje oblika

$$
0,649-0,198 x_{3}-0,192 x_{4}+u_{1}=0
$$

odnosno, možemo pisati da je

$$
-0,198 x_{3}-0,192 x_{4}+u_{1}=-0,649
$$

3. korak. Dodajuci novo dobijeno ograničenje u poslednju simpleks tabelu dobija se nova početna simpleks tabela zadataka L_{1}.

Tabela 4.

C_{o}	B	x_{0}	6	1	0	0	0
		x_{1}	x_{2}	x_{3}	x_{4}	u_{1}	
1	x_{2}	3,649	0	1	0,198	0,192	0
6	x_{1}	1,55	1	0	0,066	0,397	0
0	u_{1}	$-0,649$	0	0	$-0,198$	$-0,192$	1
$\mathrm{~F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$		12,947	0	0	0,594	2,576	0

Kako je

$$
\begin{aligned}
& (\min)\left[\begin{array}{l}
\frac{3,649}{0,198}=18,43 \\
\frac{1,55}{0,066}=23,48 \\
\frac{-0,649}{-0,198}=3,28
\end{array}\right]=3,28, \\
& \min \left[\begin{array}{l}
\frac{3,649}{0,192}=19,005 \\
\frac{1,55}{0,397}=3,9 \\
\frac{-0,649}{-0,192}=3,38
\end{array}\right]=3,38
\end{aligned}
$$

to se uvođenjem promenljive x_{3} ili $x_{4} u$ bazu može dobiti moguće rešenje. Novo moguce resenje je prikazano u sledećoj simpleks tabeli (tabela 5).

Tabela 5.

C_{0}		x_{0}	6	1	0	0	0
			x_{1}	x_{2}	x_{3}	x_{4}	u_{1}
1	x_{2}	3	0	1	0	0	1
6	x_{1}	1,33	1	0	0	0,333	0,333
0	x_{3}	3,28	0	0	1	0,97	$-5,05$
$F_{j}-c_{j}$	10,99	0	0	0	2	3	

Dobijeno rešenje je optimalno. Međ̉utim, kako promenljiva \mathbf{x}_{1} nije celobrojna, vracamo se na korak 2.
2. korak. Formira se novo ograničenje i novi zadatak L_{2}. Ogranicenje se formira na osnovu reda $x_{1} u$ prethodnoj tabeli 5 . Otuda se dobija

$$
0,33-0,333 x_{4}-0,333 u_{1}+u_{2}=0
$$

odnosno, ako se jednačina sredi

$$
-0,333 x_{4}-0,333 u_{1}+u_{2}=-0,33
$$

3. korak. Proširena simpleks tabela je

Tabela 6.

C_{0}	B	x_{0}	6	1	0	0	0	0
			x_{1}	x_{2}	x_{3}	x_{4}	u_{1}	u_{2}
1	x_{2}	3	0	1	0	0	1	0
6	x_{1}	1,33	1	0	0	0,333	0,333	0
0	x_{3}	3,28	0	0	1	0,97	$-5,05$	0
0	u_{2}	$-0,33$	0	0	0	$-0,333$	$-0,333$	1
$F_{j}-c_{j}$	10,99	0	0	0	2	2	0	

Kako je

$$
\left[\begin{array}{rl}
\frac{1,33}{0,333} & =3,99 \\
\frac{3,28}{0,97} & =3,38 \\
\frac{-0,33}{-0,333} & =1
\end{array}\right]=1
$$

to se moguće rešenje može dobiti uvođenjem u bazu promenljive $x_{\boldsymbol{A}}$, kao što je to pokazano u tabeli 7 .

Tabela 7.

C_{0}	B	x_{0}	6	1	0	0	0	0
			x_{1}	x_{2}	x_{3}	x_{4}	u_{1}	u_{2}
1	x_{2}	3	0	1	0	0	1	0
6	x_{1}	1	1	0	0	0	0	1
0	x_{3}	2,31	0	0	1	0	$-6,02$	$-15,15$
0	x_{4}	1	0	0	0	1	1	-3
$F_{j}-c_{j}$	9	0	0	0	0	1	6	

U tabeli 7 dobijeno je optimalno rešenje zadataka celobrojnog programiranja,

$$
x_{1}=1, \quad x_{2}=3, \quad x_{4}=1 \quad i \quad(\max) F(X)=9
$$

Za promenljivu x_{3} nije se tražilo da ima celobrojnu vrednost.
60. Zadatak

Rešiti zadatke celobrojnog programiranja definisane matematickim modelima:
a) $(\max) F(X)=x_{1}+8 x_{2}$

$$
3 x_{1}+x_{2} \leqslant 9
$$

$$
0,16 x_{1}+x_{2} \leqslant 1,9
$$

$\mathrm{x}_{1} \geqslant 0, \quad \mathrm{x}_{2} \geqslant 0 \quad$ i celi brojevi.
b) $(\max) F(X)=0,25 x_{1}+x_{2}$
$0,5 x_{1}+x_{2} \leq 1,75$
$x_{1}+0,3 x_{2} \leqslant 1,5$
$\mathrm{x}_{1} \geqslant 0, \mathrm{x}_{2} \geqslant 0 \quad$ i celi brojevi.
c) $(\max) F(X)=8 x_{1}+6 x_{2}$
$3 x_{1}+5 x_{2}+x_{3}=11$
$4 x_{1}+x_{2}+x_{4}=8$
$x_{1} \geqslant 0$ i celobrojno, $x_{2} \geqslant 0$.

Resenje. Primenom napred izloženog metoda celobrojnog programiranja (zadatak 58.) dobijaju se rešenja:
a) $\overline{x_{1}}=2, x_{2}=1 \mathrm{i}(\max) F(X)=10$. Izravnavajuće promenljive su: $\mathrm{x}_{3}=2 \mathrm{i}$ $x_{4}=0,58$;
b) $x_{1}=1, x_{2}=1 \mathrm{i}(\max) F(X)=1,25$. Izravnavajuce promenljive su: $x_{3}=0,25$ i $x_{4}=0,2$;
c) $\mathrm{x}_{1}=1, \mathrm{x}_{2}=1,6 \mathrm{i}(\max) \mathrm{F}(\mathrm{X})=17,62$.

General Cutting Planes

Consider the following integer program:

If we ignore integrality, we get the following optimal tableau (with the updated columns and reduced costs shown for nonbasic variables):

Variable	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$-\boldsymbol{z}$	RHS
$\boldsymbol{x}_{\mathbf{2}}$	0	1	$7 / 22$	$1 / 22$	0	$7 / 2$
$\boldsymbol{x}_{\mathbf{1}}$	1	0	$-1 / 22$	$3 / 22$	0	$9 / 2$
$-\boldsymbol{z}$	0	0	$28 / 11$	$15 / 11$	1	63

Let's look at the first constraint:

$$
\boldsymbol{x}_{2}+7 / 22 s_{1}+1 / 22 s_{2}=7 / 2
$$

We can manipulate this to put all of the integer parts on the left side, and all the fractional parts on the right to get:

$$
x_{2}-3=1 / 2-7 / 22 s_{1}-1 / 22 s_{2}
$$

Now, note that the left hand side consists only of integers, so the right hand side must add up to an integer. Which integer can it be? Well, it consists of some positive fraction minus a series of positive values. Therefore, the right hand side can only be $0,-1,-2, \ldots$; it cannot be a positive value. Therefore, we have derived the following constraint:

$$
1 / 2-7 / 22 s_{1}-1 / 22 s_{2} \leq 0
$$

This constraint is satisfied by every feasible integer solution to our original problem. But, in our current solution, $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ both equal 0 , which is infeasible to the above constraint. This means the above constraint is a cut, called the Gomory cut after its discoverer. We can now add this constraint to the linear program and be guaranteed to find a different solution, one that might be integer.

We can also generate a cut from the other constraint. Here we have to be careful to get the signs right:

$$
\begin{aligned}
\boldsymbol{x}_{1}-1 / 22 s_{1}+3 / 22 s_{2} & =9 / 2 \\
\boldsymbol{x}_{1}+(-1+21 / 22) s_{1}+3 / 22 s_{2} & =4+1 / 2 \\
\boldsymbol{x}_{1}-s_{1}-4 & =1 / 2-21 / 22 s_{1}-3 / 22 s_{2}
\end{aligned}
$$

gives the constraint

$$
1 / 2-21 / 22 s_{1}-3 / 22 s_{2} \leq 0
$$

In general, let $\lfloor a\rfloor$ be defined as the largest integer less than or equal to a. For example, $\lfloor 3.9\rfloor=3$, $\lfloor 5\rfloor=5$, and $\lfloor-1.3\rfloor=-2$.

If we have a constraint

$$
x_{k}+\sum a_{i} x_{i}=b
$$

with b not an integer, we can write each $a_{i}=\left\lfloor a_{i}\right\rfloor+a_{i}^{\prime}$, for some $0 \leq a_{i}^{\prime}<1$, and $b=\lfloor b\rfloor+b^{\prime}$ for some $0 ;$ SPMIt; $b^{\prime} ;$ SPMIt; 1 . Using the same steps we get:

$$
x_{k}+\sum\left\lfloor a_{i}\right\rfloor x_{i}-\lfloor b\rfloor=b^{\prime}-\sum a_{i}^{\prime} x_{i}
$$

to get the cut

$$
b^{\prime}-\sum a_{i}^{\prime} x_{i} \leq 0
$$

This cut can then be added to the linear program and the problem resolved. The problem is guaranteed not to get the same solution.

This method can be shown to guarantee finding the optimal integer solution. There are a couple of disadvantages:

1. Round-off error can cause great difficulties: Is that 3.000000001 really a 3 , or should I generate a cut? If I make the wrong decision I could either cut off a feasible solution (if it is really a 3 but I generate a cut) or I could end up with an infeasible solution (if it is not a 3 but I treat it as one).
2. The number of constraints that are generated can be enormous. Just like branch and bound can generate a huge number of subproblems, this technique can generate a huge number of constraints.

The combination of these makes this cutting plane technique impractical by itself. Recently however, more powerful techniques have been discovered for special problem structure. This is the subject of the next section.

