
Univerzitet u Zenici 
Pedagoški fakultet 
Akademska 2009/2010. 

Sveska sa vježbi iz predmeta
Operaciona istraživanja

Sedmica broj 1
Problemi transporta i distribucije 3
     • Formulacija transportnog problema 3
     • Metode odr ivanja bazi nog rješen,a transportnog problema 6
          • Dijagonalna metoda (metoda sjeverozapadnog ugla) 7
          • Metoda najmanje jedini ne cijena 9
          • Slu aj degenetacije 10
          • VAM metoda (Vogelova metoda) 11
     • Metode odr ivanja optimalnog rješenja transportnog problema 16
          • Metoda raspodjele 16

Sedmica broj 2
Problemi transporta i distribucije 
     • Metode odr ivanja optimalnog rješenja transportnog problema 
          • Metoda koeficijenata ili modificirana metoda distribucije 27
     • Razli ite modifikacije transportnog problema 36
          • Otvoreni model transporta 36

Sedmica broj 3
Problemi transporta i distribucije 
     • Razli ite modifikacije transportnog problema 
          • Minimizacija vremena transporta 43

Zadaci za vježbu 51

Sedmica broj 4
Problemi transporta i distribucije 
     • Razli ite modifikacije transportnog problema 
          • Metoda raspore ivanja 63 

Sedmica broj 5
Cjelobrojno programiranje 81
     • Metoda odsje aka (Gomorijeva metoda) 85

Sedmica broj 6
Cjelobrojno programiranje 
     • Metoda grananja i ograni avanja 103 

1

Sedmica broj 7
Teorija igara 
     • Opšti pojmovi i definicije iz domena matri nih igara 117
     • Rješavanje prostih matri nih igara 119

Sedmica broj 8 i 9
Teorija igara 
     • Rješavanje mješovitih matri nih igara 129
          • Rješavanje matri nih igara 2×2 130
          • Rješavanje matri nih igara n×2 136
          • Rješavanje matri nih igara 2×m 142

Sedmica broj 10
Teorija igara 
     • Rješavanje matri nih igara redukcijom matrice cijena igra 149

Sedmica broj 11
Teorija igara 
     • Rješavanje matri nih igara n×m primjenom linearnog programiranja 161

Sedmica broj 12
Mrežno planiranje 181
     • Uvod 181
     • Analiza strukture 181

Sedmica broj 13
Mrežno planiranje 
     • Analiza vremena i troškova (Metoda kriti nog puta) 191

Sedmica broj 14
Mrežno planiranje 
     • Analiza vremena i troškova (Pert metoda) 205

Sedmica broj 15
Mrežno planiranje 
     • Raspodjela resursa 219

Dodatak A
Numeri ko rješavanje linearnog problema 237
     • Simpleks metoda 237

Dodatak B
Dva ispitna roka 255

2



3 4



5 6



7 8



9 10



11 12



13 14



15 16



17 18



19 20



21 22



23 24



25

(Ova stranica je ostavljena prazna)

26



27 28



29 30



31 32



33 34



35 36



37 38



39 40



41 42



43 44



45 46



47 48



49

(Ova stranica je ostavljena prazna)

50



51 52



53 54



55 56



57 58



59 60



61 62



63 64



65 66



67 68



69 70



71 72



73 74



75 76



77 78



79 80



81 82



83 84



85 86



87 88



89 90



91 92



93 94



95 96



97 98



General Cutting Planes

Consider the following integer program:

If we ignore integrality, we get the following optimal tableau (with the updated columns and reduced costs

shown for nonbasic variables):

Let's look at the first constraint:

We can manipulate this to put all of the integer parts on the left side, and all the fractional parts on the

right to get:

Now, note that the left hand side consists only of integers, so the right hand side must add up to an integer.

Which integer can it be? Well, it consists of some positive fraction minus a series of positive values.

Therefore, the right hand side can only be  ; it cannot be a positive value. Therefore, we

have derived the following constraint:

This constraint is satisfied by every feasible integer solution to our original problem. But, in our current

solution,  and  both equal 0, which is infeasible to the above constraint. This means the above

constraint is a cut, called the Gomory cut after its discoverer. We can now add this constraint to the linear

program and be guaranteed to find a different solution, one that might be integer.

We can also generate a cut from the other constraint. Here we have to be careful to get the signs right:

gives the constraint

99

In general, let  be defined as the largest integer less than or equal to a. For example,  ,

 , and  .

If we have a constraint

with b not an integer, we can write each  , for some  , and  for

some 0 ;SPMlt; b' ;SPMlt; 1. Using the same steps we get:

to get the cut

This cut can then be added to the linear program and the problem resolved. The problem is guaranteed not

to get the same solution.

This method can be shown to guarantee finding the optimal integer solution. There are a couple of

disadvantages:

Round-off error can cause great difficulties: Is that 3.000000001 really a 3, or should I generate a

cut? If I make the wrong decision I could either cut off a feasible solution (if it is really a 3 but I

generate a cut) or I could end up with an infeasible solution (if it is not a 3 but I treat it as one).

1.

The number of constraints that are generated can be enormous. Just like branch and bound can

generate a huge number of subproblems, this technique can generate a huge number of constraints.

2.

The combination of these makes this cutting plane technique impractical by itself. Recently however, more

powerful techniques have been discovered for special problem structure. This is the subject of the next

section.

100



9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS—A SAMPLE PROBLEM

Whereas the simplex method is effective for solving linear programs, there is no single technique for solving
integer programs. Instead, a number of procedures have been developed, and the performance of any particular
technique appears to be highly problem-dependent. Methods to date can be classified broadly as following
one of three approaches:

i) enumeration techniques, including the branch-and-bound procedure;
ii) cutting-plane techniques; and
iii) group-theoretic techniques.

In addition, several composite procedures have been proposed, which combine techniques using several of
these approaches. In fact, there is a trend in computer systems for integer programming to include a number
of approaches and possibly utilize them all when analyzing a given problem. In the sections to follow, we
shall consider the first two approaches in some detail. At this point, we shall introduce a specific problem
and indicate some features of integer programs. Later we will use this example to illustrate and motivate the
solution procedures. Many characteristics of this example are shared by the integer version of the custom-
molder problem presented in Chapter 1.

The problem is to determine z∗ where:

z∗ = max z = 5x1 + 8x2,

101

subject to:

x1 + x2 ≤ 6,

5x1 + 9x2 ≤ 45,

x1, x2 ≥ 0 and integer.

The feasible region is sketched in Fig. 9.8. Dots in the shaded region are feasible integer points.

Figure 9.8 An integer programming example.

If the integrality restrictions on variables are dropped, the resulting problem is a linear program. We will
call it the associated linear program. We may easily determine its optimal solution graphically. Table 9.1
depicts some of the features of the problem.

Table 9.1 Problem features.
Nearest

Continuous Round feasible Integer
optimum off point optimum

x1
9
4 = 2.25 2 2 0

x2
15
4 = 3.75 4 3 5

z 41.25 Infeasible 34 40

Observe that the optimal integer-programming solution is not obtainedby rounding the linear-programming
solution. The closest point to the optimal linear-program solution is not even feasible. Also, note that the
nearest feasible integer point to the linear-program solution is far removed from the optimal integer point.
Thus, it is not sufficient simply to round linear-programming solutions. In fact, by scaling the righthand-side
and cost coefficients of this example properly, we can construct a problem for which the optimal integer-
programming solution lies as far as we like from the rounded linear-programming solution, in either z value
or distance on the plane.

In an example as simple as this, almost any solution procedure will be effective. For instance, we could
easily enumerate all the integer points with x1 ≤ 9, x2 ≤ 6, and select the best feasible point. In practice, the
number of points to be considered is likely to prohibit such an exhaustive enumeration of potentially feasible
points, and a more sophisticated procedure will have to be adopted.

102



Figure 9.9 Subdividing the feasible region.

9.5 BRANCH-AND-BOUND

Branch-and-bound is essentially a strategy of ‘‘divide and conquer.’’ The idea is to partition the feasible
region into more manageable subdivisions and then, if required, to further partition the subdivisions. In
general, there are a number of ways to divide the feasible region, and as a consequence there are a number of
branch-and-bound algorithms. We shall consider one such technique, for problems with only binary variables,
in Section 9.7. For historical reasons, the technique that will be described next usually is referred to as the
branch-and-bound procedure.

Basic Procedure

An integer linear program is a linear program further constrained by the integrality restrictions. Thus, in a
maximization problem, the value of the objective function, at the linear-program optimum, will always be an
upper bound on the optimal integer-programming objective. In addition, any integer feasible point is always
a lower bound on the optimal linear-program objective value.

The idea of branch-and-bound is to utilize these observations to systematically subdivide the linear-
programming feasible region and make assessments of the integer-programming problem based upon these
subdivisions. The method can be described easily by considering the example from the previous section.
At first, the linear-programming region is not subdivided: The integrality restrictions are dropped and the
associated linear program is solved, giving an optimal value z0. From our remark above, this gives the upper
bound on z∗, z∗ ≤ z0 = 411

4 . Since the coefficients in the objective function are integral, z∗ must be integral
and this implies that z∗ ≤ 41.

Next note that the linear-programming solution has x1 = 21
4 and x2 = 33

4 . Both of these variables must
be integer in the optimal solution, and we can divide the feasible region in an attempt to make either integral.
We know that, in any integer programming solution, x2 must be either an integer ≤ 3 or an integer ≥ 4. Thus,
our first subdivision is into the regions where x2 ≤ 3 and x2 ≥ 4 as displayed by the shaded regions L1 and
L2 in Fig. 9.9. Observe that, by making the subdivisions, we have excluded the old linear-program solution.
(If we selected x1 instead, the region would be subdivided with x1 ≤ 2 and x1 ≥ 3.)

The results up to this point are pictured conveniently in an enumeration tree (Fig. 9.10). Here L0
represents the associated linear program, whose optimal solution has been included within the L0 box, and
the upper bound on z∗ appears to the right of the box. The boxes below correspond to the new subdivisions;
the constraints that subdivide L0 are included next to the lines joining the boxes. Thus, the constraints of L1
are those of L0 together with the constraint x2 ≥ 4, while the constraints of L2 are those of L0 together with
the constraint x2 ≤ 3.

The strategy to be pursued now may be apparent: Simply treat each subdivision as we did the original
problem. Consider L1 first. Graphically, from Fig. 9.9 we see that the optimal linear-programming solution

103

Figure 9.10 Enumeration tree.

Figure 9.11 Subdividing the region L1.

lies on the second constraint with x2 = 4, giving x1 = 1
5(45 − 9(4)) = 9

5 and an objective value z =
5
(9

5

)+8(4) = 41. Since x1 is not integer, we subdivide L1 further, into the regions L3 with x1 ≥ 2 and L4 with
x1 ≤ 1. L3 is an infeasible problemand so this branchof the enumeration tree no longer needs to be considered.

The enumeration tree now becomes that shown in Fig. 9.12. Note that the constraints of any subdivision
are obtained by tracing back to L0. For example, L4 contains the original constraints together with x2 ≥ 4
and x1 ≤ 2. The asterisk (∗) below box L3 indicates that the region need not be subdivided or, equivalently,
that the tree will not be extended from this box.

At this point, subdivisions L2 and L4 must be considered. We may select one arbitrarily; however,
in practice, a number of useful heuristics are applied to make this choice. For simplicity, let us select the
subdivision most recently generated, here L4. Analyzing the region, we find that its optimal solution has

x1 = 1, x2 = 1
9(45 − 5) = 40

9 .

Since x2 is not integer, L4 must be further subdivided into L5 with x2 ≤ 4, and L6 with x2 ≥ 5, leaving L2,
L5 and L6 yet to be considered.

Treating L5 first (see Fig. 9.13), we see that its optimum has x1 = 1, x2 = 4, and z = 37. Since this is
the best linear-programming solution for L5 and the linear program contains every integer solution in L5, no
integer point in that subdivision can give a larger objective value than this point. Consequently, other points

104



Figure 9.12

Figure 9.13 Final subdivisions for the example.

in L5 need never be considered and L5 need not be subdivided further. In fact, since x1 = 1, x2 = 4, z = 37,
is a feasible solution to the original problem, z∗ ≥ 37 and we now have the bounds 37 ≤ z∗ ≤ 41. Without
further analysis, we could terminate with the integer solution x1 = 1, x2 = 4, knowing that the objective
value of this point is within 10 percent of the true optimum. For convenience, the lower bound z∗ ≥ 37 just
determined has been appended to the right of the L5 box in the enumeration tree (Fig. 9.14).

Although x1 = 1, x2 = 4 is the best integer point in L5, the regions L2 and L6 might contain better
feasible solutions, and we must continue the procedure by analyzing these regions. In L6, the only feasible
point is x1 = 0, x2 = 5, giving an objective value z = +40. This is better than the previous integer point and
thus the lower bound on z∗ improves, so that 40 ≤ z∗ ≤ 41. We could terminate with this integer solution
knowing that it is within 2.5 percent of the true optimum. However, L2 could contain an even better integer
solution.

The linear-programming solution in L2 has x1 = x2 = 3 and z = 39. This is the best integer point in
L2 but is not as good as x1 = 0, x2 = 5, so the later point (in L6) must indeed be optimal. It is interesting
to note that, even if the solution to L2 did not give x1 and x2 integer, but had z < 40, then no feasible
(and, in particular, no integer point) in L2 could be as good as x1 = 0, x2 = 5, with z = 40. Thus, again
x1 = 0, x2 = 5 would be known to be optimal. This observation has important computational implications,

105

Figure 9.14

since it is not necessary to drive every branch in the enumeration tree to an integer or infeasible solution, but
only to an objective value below the best integer solution.

The problem now is solved and the entire solution procedure can be summarized by the enumeration tree
in Fig. 9.15.

Figure 9.15

Further Considerations

There are three points that have yet to be considered with respect to the branch-and-bound procedure:

i) Can the linear programs corresponding to the subdivisions be solved efficiently?
ii) What is the bestway to subdivide a given region, andwhich unanalyzed subdivision should be considered

next?

106



iii) Can the upper bound (z = 41, in the example) on the optimal value z∗ of the integer program be improved
while the problem is being solved?

The answer to the first question is an unqualified yes. When moving from a region to one of its subdivisions,
we add one constraint that is not satisfied by the optimal linear-programming solution over the parent region.
Moreover, this was one motivation for the dual simplex algorithm, and it is natural to adopt that algorithm
here.

Referring to the sample problem will illustrate the method. The first two subdivisions L1 and L2 in that
example were generated by adding the following constraints to the original problem:

For subdivision 1 : x2 ≥ 4 or x2 − s3 = 4 (s3 ≥ 0);
For subdivision 2 : x2 ≤ 3 or x2 + s4 = 3 (s4 ≥ 0).

In either case we add the new constraint to the optimal linear-programming tableau. For subdivision 1, this
gives:

(−z) − 5
4s1 − 3

4s2 = −411
4

x1 + 9
4s1 − 1

4s2 = 9
4

�x2 − 5
4s1 + 1

4s2 = 15
4

⎫⎪⎬
⎪⎭

Constraints from the
optimal canonical
form

−x2 + s3 = −4, Added constraint
x1, x2, s1, s2, s3 ≥ 0,

where s1 and s2 are slack variables for the two constraints in the original problem formulation. Note that
the new constraint has been multiplied by −1, so that the slack variable s3 can be used as a basic variable.
Since the basic variable x2 appears with a nonzero coefficient in the new constraint, though, we must pivot
to isolate this variable in the second constraint to re-express the system as:

(−z) −5
4s1 −3

4s2 = −411
4 ,

x1 +9
4s1 −1

4s2 = 9
4 ,

x2 −5
4s1 +1

4s2 = 15
4 ,

��
��
− 5

4s1 +1
4s2 +s3 = −1

4 ,

x1, x2, s1, s2, s3 ≥ 0.

These constraints are expressed in the proper form for applying the dual simplex algorithm, which will pivot
next to make s1 the basic variable in the third constraint. The resulting system is given by:

(−z) − s2 − s3 = −41,

x1 +1
5s2 +9

5s3 = 9
5 ,

x2 − s3 = 4,

s1 −1
5s2 −4

5s3 = 1
5 ,

x1, x2, s1, s2, s3 ≥ 0.

This tableau is optimal and gives the optimal linear-programming solution over the region L1 as x1 = 9
5 , x2 =

4, and z = 41. The same procedure can be used to determine the optimal solution in L2.
When the linear-programming problemcontainsmany constraints, this approach for recovering an optimal

solution is very effective. After adding a new constraint and making the slack variable for that constraint
basic, we always have a starting solution for the dual-simplex algorithm with only one basic variable negative.
Usually, only a few dual-simplex pivoting operations are required to obtain the optimal solution. Using the
primal-simplex algorithm generally would require many more computations.

107

Figure 9.16

Issue (ii) raised above is very important since, if we can make our choice of subdivisions in such a way
as to rapidly obtain a good (with luck, near-optimal) integer solution ẑ, then we can eliminate many potential
subdivisions immediately. Indeed, if any region has its linear programming value z ≤ ẑ, then the objective
value of no integer point in that region can exceed ẑ and the region need not be subdivided. There is no
universal method for making the required choice, although several heuristic procedures have been suggested,
such as selecting the subdivision with the largest optimal linear-programming value.†

Rules for determining which fractional variables to use in constructing subdivisions are more subtle.
Recall that any fractional variable can be used to generate a subdivision. One procedure utilized is to look
ahead one step in the dual-simplex method for every possible subdivision to see which is most promising. The
details are somewhat involved and are omitted here. For expository purposes, we have selected the fractional
variable arbitrarily.

Finally, the upper bound z on the value z∗ of the integer program can be improved as we solve the problem.
Suppose for example, that subdivision L2 was analyzed before subdivisions L5 or L6 in our sample problem.
The enumeration tree would be as shown in Fig. 9.16.

At this point, the optimal solution must lie in either L2 or L4. Since, however, the largest value for
any feasible point in either of these regions is 405

9 , the optimal value for the problem z∗ cannot exceed 405
9 .

Because z∗ must be integral, this implies that z∗ ≤ 40 and the upper bound has been improved from the value
41 provided by the solution to the linear program on L0. In general, the upper bound is given in this way as
the largest value of any ‘‘hanging’’ box (one that has not been divided) in the enumeration tree.

Summary

The essential idea of branch-and-bound is to subdivide the feasible region to developbounds z < z∗ < z on z∗.
For a maximization problem, the lower bound z is the highest value of any feasible integer point encountered.
The upper bound is given by the optimal value of the associated linear program or by the largest value for
the objective function at any ‘‘hanging’’ box. After considering a subdivision, we must branch to (move to)
another subdivision and analyze it. Also, if either

† One common method used in practice is to consider subdivisions on a last-generated–first-analyzed basis. We used
this rule in our previous example. Note that data to initiate the dual-simplex method mentioned above must be stored for
each subdivision that has yet to be analyzed. This data usually is stored in a list, with new information being added to the
top of the list. When required, data then is extracted from the top of this list, leading to the last-generated–first-analyzed
rule. Observe that when we subdivide a region into two subdivisions, one of these subdivisions will be analyzed next.
The data required for this analysis already will be in the computer core and need not be extracted from the list.

108



i) the linear program over L j is infeasible;

ii) the optimal linear-programming solution over L j is integer; or

iii) the value of the linear-programming solution z j over L j satisfies z j ≤ z (if maximizing),

then L j need not be subdivided. In these cases, integer-programming terminology says that L j has been
fathomed.† Case (i) is termed fathoming by infeasibility, (ii) fathoming by integrality, and (iii) fathoming by
bounds.

The flow chart in Fig. 9.17 summarizes the general procedure.

Figure 9.17 Branch-and-bound for integer-programming maximization.

† To fathom is defined as ‘‘to get to the bottom of; to understand thoroughly.’’ In this chapter, fathomed might be more
appropriately defined as ‘‘understood enough or already considered.’’

109

Figure 9.18

110



Branch and Bound

We will explain branch and bound by using the capital budgeting example from the previous section. In that

problem, the model is

The linear relaxation solution is  with a value of 22. We know that no

integer solution will have value more than 22. Unfortunately, since  is not integer, we do not have an

integer solution yet.

We want to force  to be integer. To do so, we branch on  , creating two new problems. In one, we will

add the constraint  . In the other, we add the constraint  . This is illustrated in Figure 2.

   

Figure 2: First Branching

Note that any optimal solution to the overall problem must be feasible to one of the subproblems. If we

solve the linear relaxations of the subproblems, we get the following solutions:

 : objective 21.65,  ,  ,  ,  ;

 : objective 21.85,  ,  ,  ,  .

At this point we know that the optimal integer solution is no more than 21.85 (we actually know it is less

than or equal to 21 (Why?)), but we still do not have any feasible integer solution. So, we will take a

subproblem and branch on one of its variables. In general, we will choose the subproblem as follows:

We will choose an active subproblem, which so far only means one we have not chosen before, and

We will choose the subproblem with the highest solution value (for maximization) (lowest for

111

minimization).

In this case, we will choose the subproblem with  , and branch on  . After solving the resulting

subproblems, we have the branch and bound tree in Figure 3.

   

Figure 3: Second Branching

The solutions are:

 ,  : objective 18,  ,  ,  ,  ;

 ,  : objective 21.8,  ,  ,  ,  .

We now have a feasible integer solution with value 18. Furthermore, since the  problem

gave an integer solution, no further branching on that problem is necessary. It is not active due to integrality

of solution. There are still active subproblems that might give values more than 18. Using our rules, we will

branch on problem  by branching on  to get Figure 4.

112



Figure 4: Third Branching

The solutions are:

 ,  ,  : objective 21,  ,  ,  ,  ;

 ,  ,  : infeasible.

Our best integer solution now has value 21. The subproblem that generates that is not active due to

integrality of solution. The other subproblem generated is not active due to infeasibility. There is still a

subproblem that is active. It is the subproblem with solution value 21.65. By our ``round-down'' result, there

is no better solution for this subproblem than 21. But we already have a solution with value 21. It is not

useful to search for another such solution. We can fathom this subproblem based on the above bounding

argument and mark it not active. There are no longer any active subproblems, so the optimal solution value

is 21.

We have seen all parts of the branch and bound algorithm. The essence of the algorithm is as follows:

Solve the linear relaxation of the problem. If the solution is integer, then we are done. Otherwise1.

113

create two new subproblems by branching on a fractional variable.

A subproblem is not active when any of the following occurs:

You used the subproblem to branch on,1.

All variables in the solution are integer,2.

The subproblem is infeasible,3.

You can fathom the subproblem by a bounding argument.4.

2.

Choose an active subproblem and branch on a fractional variable. Repeat until there are no active

subproblems.

3.

That's all there is to branch and bound! Depending on the type of problem, the branching rule may change

somewhat. For instance, if x is restricted to be integer (but not necessarily 0 or 1), then if x=4.27 your would

branch with the constraints  and  (not on x=4 and x=5).

In the worst case, the number of subproblems can get huge. For many problems in practice, however, the

number of subproblems is quite reasonable.

For an example of a huge number of subproblems, try the following in LINGO:

model:
  sets:
    a /1..17/: x;
  endsets

  max = -x0 + @sum(a: 2 * x);
  x0 + @sum(a: 2 * x) < 17;
  @for (a: @bin(x));
end

Note that this problem has only 18 variables and only a single constraint. LINDO looks at 48,619

subproblems, taking about 20 minutes on a Sun Sparc workstation, before deciding the optimal objective is

16. LINGO on a 16MHz 386 PC (with math coprocessor) looks at 48,000+ subproblems and takes about

five hours. CPLEX on a Sun SPARC 10 takes about 50 seconds to examine 61,497 subproblems (counting

those that are fathomed without solving the LP). The 100 variable version of this problem would take about

 subproblems or about  years (at 1000 subproblems per second). Luckily, most problems take

far less time.

114



115

(Ova stranica je ostavljena prazna)

116



117 118



119 120



121 122



123 124



125 126



127 128



129 130



131 132



133 134



135 136



137 138



139 140



141 142



143 144



145 146



147 148



149 150



151 152



153 154



155 156



157 158



159 160



161 162



163 164



165 166



167 168



169 170



171 172



173 174



175 176



177 178



179 180



181 182



183 184



185 186



187 188



189 190



191 192



193 194



195 196



197 198



199 200



201 202



203 204



205 206



207 208



209 210



211 212



213 214



215 216



217 218



219 220



221 222



223 224



225 226



227 228



229 230



231 232



233 234



235

(Ova stranica je ostavljena prazna)

236



237 238



239 240



241 242



243 244



245 246



247 248



249 250



251 252



253 254



Univerzitet u Zenici 
Pedagoški fakultet 
Odsjek: Matematika i informatika 
Zenica,  12.02.2010. 

Pismeni ispit iz Operacionih istraživanja

1. Riba se izlovljava u uzgajalištima , , . Svako jutro riba kre e put ribarnica koje se 
nalaze u mjestima , ,  i . Iz uzgajališta  do ribarnica prijevoz traje redom: 2, 5, 9 i 6 
sati. Da bi iz  riba došla u spomenute ribarnice treba po 1, 7, 3 i 8 sati. Kona no, prijevozi iz 
traju 5, 9 do ribarnica , , te po 3 i 4 sata do ribarnica  i  (respektivno). Na uzgajalištima je 
na raspolaganju: 80 t, 120 t, 160 t dnevno, a ribarnice potražuju redom: 100 t, 40 t, 150 t i 110 t 
dnevno.

1I 2I 3I

1R 2R 3R 4R 1I

2I 3I

1R 2R 3R 4R

Kako treba prevesti ribu da ukupno vrijeme transporta bude minimalno. 
Napraviti takav plan transporta da je što je mogu e manje ribe na najdužem putu. Za polazno 

bazi no rješenje uzeti rješenje dobijeno pod a) 

2. Za matri nu igru definisanu matricom cijena odrediti optimalne strategije igra a i vrijednost 
igre: 

strategije B1 B2 B3 B4
A1 10 10 2 2
A2 2 2 9 9
A3 5 10 5 10
A4 4 2 4 2

3. Na osnovu sastavljene liste odre enog skupa aktivnosti sa njihovim me uzavisnostima i 
determinisanim vremenima realizacije pojedinih aktivnosti , oblikovati i prora unati mrežni dijagram 
CPM (na i kriti ni put, najraniji po etak, najraniji kraj, najkasniji po etak, najkasniji kraj i 
vremenske rezerve) 

Aktivnosti trajanje preduvjeti
A 3 -
B 6 -
C 4 -
D 7 A
E 8 A,B
F 10 A,B
G 12 A,B
H 8 C
I 6 D,E
J 7 H,G 
K 2 I,J,F

4. Problem riješiti Gomorijevom metodom: 

0

(min) 4 6
5 60

45
,

f x y

x y

x y

x y

255

Univerzitet u Zenici 
Pedagoški fakultet 
Odsjek: Matematika i informatika 
Zenica,  29.01.2010. 

Pismeni ispit iz Operacionih istraživanja

1. Radna organizacija je nabavila pet mašine, specijalizovane za proizvodnju pojedinog sastavnog 
dijela složenog proizvoda. Potrebno je zaposliti pet radnika na ove mašine, tako da jedan radnik 
može raditi istovremeno samo na jednoj mašini. Konkursna komisija radne organizacije je odlu ila 
da osnovni kriterijum za izbor radnika bude škart na proizvodima. Svaki radnik je proizveo isti broj 
proizvoda na svakoj mašini. Pri tome je bio procenat škarta na proizvodima kao što je dato u tabeli: 

M1 M2 M3 M4 M5
R1 4 7 11 8 6
R2 6 8 4 2 2
R3 6 10 6 5 5
R4 11 6 7 8 4
R5 5 6 11 5 10

Kako rasporediti radnike na mašine da bi ukupan procenat škarta na proizvodima bio najmanji? 

2. Za matri nu igru definisanu matricom cijena odrediti optimalne strategije igra a i vrijednost igre: 
strategije B1 B2
A1 1 -1
A2 0 1
A3 -1 0
A4 2 -3
A5 1 2

3. Na osnovu sastavljene liste odre enog skupa aktivnosti sa njihovim me uzavisnostima i 
determinisanim vremenima realizacije pojedinih aktivnosti , oblikovati i prora unati mrežni 
dijagram CPM (na i kriti ni put, najraniji po etak, najraniji kraj, najkasniji po etak, najkasniji kraj i 
vremenske rezerve) 

.

4. Dva modela stolica P
1
 i P

2
 pri izradi prolaze kroz dvije mašine: M

1
, M

2
. Vrijeme obrade u satima po 

komadu i kapaciteti mašina dati su u tabeli: 
Mašine

M1 M2

P1 2 3proizvod P2 1 -
Kapaciteti

mašina 20 10

Stolica P1 prodaje se po cijeni od 14, stolica P2 po cijeni od 4 nov ane jedinice. Kako treba planirati 
proizvodnju da se ostvari maksimalna dobit?  Problem rješavati metodom grananja i ograni avanja.

256


