Sveska sa vježbi iz predmeta Operaciona istraživanja

Sedmica broj 1
Problemi transporta i distribucije 3

- Formulacija transportnog problema 3
- Metode odrđivanja bazičnog rješen,a transportnog problema 6
- Dijagonalna metoda (metoda sjeverozapadnog ugla) 7
- Metoda najmanje jedinične cijena 9
- Slučaj degenetacije 10
- VAM metoda (Vogelova metoda) 11
- Metode odrđivanja optimalnog rješenja transportnog problema 16
- Metoda raspodjele 16
Sedmica broj 2
Problemi transporta i distribucije
- Metode odrđivanja optimalnog rješenja transportnog problema
- Metoda koeficijenata ili modificirana metoda distribucije 27
- Različite modifikacije transportnog problema 36
- Otvoreni model transporta 36
Sedmica broj 3
Problemi transporta i distribucije
- Različite modifikacije transportnog problema
- Minimizacija vremena transporta 43
Zadaci za vježbu 51
Sedmica broj 4
Problemi transporta i distribucije
- Različite modifikacije transportnog problema
- Metoda raspoređivanja 63
Sedmica broj 5
Cjelobrojno programiranje 81
- Metoda odsječaka (Gomorijeva metoda) 85
Sedmica broj 6
Cjelobrojno programiranje
- Metoda grananja i ograničavanja 103
Sedmica broj 7
Teorija igara
- Opšti pojmovi i definicije iz domena matričnih igara 117
- Rješavanje prostih matričnih igara 119
Sedmica broj 8 i 9
Teorija igara
- Rješavanje mješovitih matričnih igara 129
- Rješavanje matričnih igara 2×2 130
- Rješavanje matričnih igara $\mathrm{n} \times 2$ 136
- Rješavanje matričnih igara $2 \times \mathrm{m}$ 142
Sedmica broj 10
Teorija igara
- Rješavanje matričnih igara redukcijom matrice cijena igra 149
Sedmica broj 11
Teorija igara
- Rješavanje matričnih igara $\mathrm{n} \times \mathrm{m}$ primjenom linearnog programiranja 161
Sedmica broj 12
Mrežno planiranje 181
- Uvod 181
- Analiza strukture 181
Sedmica broj 13
Mrežno planiranje
- Analiza vremena i troškova (Metoda kritičnog puta) 191
Sedmica broj 14
Mrežno planiranje
- Analiza vremena i troškova (Pert metoda) 205
Sedmica broj 15
Mrežno planiranje
- Raspodjela resursa 219
Dodatak A
Numeričko rješavanje linearnog problema 237
- Simpleks metoda 237
Dodatak B
Dva ispitna roka 255

5.
 PROBLEMI TRANSPORTA I DISTRIBUCIJE

Posljednje desetljeće znanost posvećuje sve veću pažnju pitanjima organizacije i planiranja, posebno u domeni prometa i transporta, jer su pitanja racionalizacije u ovoj gospodarskoj grani postala vrlo složena.

Posebni slučaj općeg problema linearnog programiranja je tzv. transportni problem. Još prije pojave radova iz linearnog programiranja, neke specijalne slučajeve transportnog problema izučavali su ekonomisti [9]. Prvu strogu postavku transportnog problema dao je Hitchcock [5] 1941. godine, pa se zato transportni problem često naziva i "problem Hičkoka".

Hitchcock je formulirao transportni problem na sljedeći način.
Dano je m proizvodnih centara ili skladišta, koji nude određenu robu u količinama $a_{1}, a_{2}, \ldots, a_{m}$ i n potrošača koji tu robu potražuju u količinama $b_{1}, b_{2}, \ldots, b_{n}$. Pretpostavlja se da je zbroj ponuda jednak zbroju potražnji: $a_{1}+a_{2}+\ldots+a_{m}=$ $=b_{1}+b_{2}+\ldots b_{n}$. Dani su brojevi $c_{i j}$ koji označavaju cijene prijevoza jedinice robe od i-tog proizvođača do j-tog potrošača. Treba naći takve veličine $x_{i j} \geq 0$, gdje $x_{i j}$ označava količinu tereta koju treba prevesti od i-tog prö̈zvođača do j-tog potrošača, tako da ukupni troškovi transporta $F=\sum_{i=1}^{m} \sum_{i=1}^{n} c_{i j} x_{i j}$ budu minimalni.

Godine 1942. Kantorovič [7] je formulirao opći problem o prenošenju neprekidnih masa. Tek 1951. godine započeo je intenzivni razvoj metoda kojima se mogu rješavati transportni problemi. Dantzig [3] je 1951. godine dao rješenje transportnog problema zasnovano na simpleks metodi. U godinama 1953. - 1955. nastaju posebni slučaj opceg prodema ınearnog programinana je tzv. traisporthi roblem. Još prije pojave radova iz linearnog programiranja, neke specijalne učajeve transportnog problema izučavali su ekonomisti [9]. Prvu strogu ostavku transportnog problema dao je Hitchcock [5] 1941. godine, pa se zato ansportni problem često naziva i "problem Hičkoka".
Hitchcock je formulirao transportni problem na sljedeći način.
Dano je m proizvodnih centara ili skladišta, koji nude određenu robu u količinama
a_{2}, \ldots, a_{m} i n potrošača koji tu robu potražuju u količinama $b_{1}, b_{2}, \ldots, b_{n}$. retpostavlja se da je zbroj ponuda jednak zbroju potražnji: $a_{1}+a_{2}+\ldots+a_{m}=$
$b_{1}+b_{2}+\ldots b_{n}$. Dani su brojevi $c_{i j}$ koji označavaju cijene prijevoza jedinice jbe od i-tog proizvođača do j-tog potrošača. Treba naći takve veličine $x_{i j} \geq 0$, dje $x_{i j}$ označava količinu tereta koju treba prevesti od i-tog prözyođača do j-tog otrošača, tako da ukupni troškovi transporta $F=\sum^{m} \sum^{n} c_{i j} x_{i j}$ budu minimalni

Godine 1942. Kantorovic̆ [7] je formulirao opći problem o prenošenju neprekidnih nasa. Tek 1951. godine započeo je intenzivni razvoj metoda kojima se mogu ešavati transportni problemi. Dantzig [3] je 1951. godine dao rješenje transportnog roblema zasnovano na simpleks metodi. U godinama 1953. - 1955. nastaju

- količine tereta koje potražuje svako odredište - potrošački centar
- cijena transporta po jedinici tereta od svakog ishodišta do svakog odredišta.

Pod optimalnim planom transporta razumijeva se onaj plan transporta robe od ishodišta do odredišta koji ima minimalne ukupne troškove transporta.

Da bi se dobila matematička formulacija transportnog problema uvode se sljedeće pretpostavke i oznake.

Neka je m ishodišta in odredišta. Ishodišta se označe sa $I_{1}, I_{2}, \ldots, I_{m}$, a odredišta s $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{n}$. Količina tereta (istovrsnog tereta) u ishodištima, oonuda. nbilieži se.
i oznake.
ta in odredišta. Ishodišta se označe sa $I_{1}, l_{2}, \ldots, I_{m}$, a .. , O_{n}. Količina tereta (istovrsnog tereta) u ishodiśtima, i, a_{2}, \ldots, a_{m} a potražnja u odredištima $s b_{1}, b_{2}, \ldots, b_{n}$. Ako biti izražene u tonama, komadima, vagonima, satima i dr., st

$$
\begin{equation*}
+\ldots+a_{m}=b_{1}+b_{2}+\ldots+b_{n} \tag{5.1}
\end{equation*}
$$

blem naziva zatvorenim. Ako je, pak, ispunjeno

- $\sum_{j=1}^{n} b_{i}$ ili $\sum_{i=1}^{m} a_{i}<\sum_{j=1}^{n} b_{i}$
blem naziva otvorenim.
$c_{i,}, i=1,2, \ldots, m ; j=1,2, \ldots, n$ cijena transpporta jedinice ta do j-tog odredišta, a $s x_{y}$ - količina tereta koju treba ta $u j$-to odredište. Svi se ti podatci mogu pregledno dati u
sijèdeč́e pretpostavke
Neka je m ishodi? odredišta s $\mathrm{O}_{1}, \mathrm{O}_{2}$. ponuda, obilježi se sa te veličine, koje mogu zadovoljavaju jednakc

$$
a_{1}+a
$$

tada se transportni pre $\sum_{=1}^{m}$,
tada se transportni prc Označi se, dalje, s tereta od i-tog ishodis prevesti iz i-tog ishodis tablici, (tablica 5.1).

Tablica 5.1

ODREDIŠTA

O_{1}	O_{2}	...	O_{n}
.	c_{12}		$c_{1 n}$
X_{11}	X_{12}	...	$\mathrm{x}_{1 \mathrm{n}}$
	C_{22}		$c_{2 n}$
X_{21}	X_{22}		$x_{2 n}$
...
,	$\mathrm{C}_{\mathrm{m} 2}$		$c_{\text {mn }}$
$x_{m 1}$	$x_{m 2}$	\cdots	$x_{m n}$

PONUDA
a_{i}

Obično se u lijevom gornjem kutu polja tablice 5.1 unose jedinične cijene transporta c_{i}, a u desnom donjem kutu polja koliciंne transporta x_{i}.

Za zatvoreni model transportnog problema veličine $x_{i j}, i=1,2, \ldots, m$; $. j=1,2, \ldots, n$ čine dopustivi ili mogući plan transporta ako zadovoljavaju sljedeća ograničenja:

$$
\begin{align*}
& \sum_{i=1}^{n} x_{i j}=a_{i}, \quad i=1,2, \ldots, m \tag{5.2}\\
& \sum_{i=1}^{m} x_{i i}=b_{i j}, \quad j=1,2, \ldots, n \tag{5.3}\\
& x_{i j} \geq 0 ; i=1,2, \ldots, m ; \quad j=1,2, \ldots, n \tag{5.4}
\end{align*}
$$

Teorem 5.1

Uvjet $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$ je nužan i dovoljan uvjet da bi sustav jednadžbi (5.2),
(5.3) bio suglasan.

Dokaz:

Zaista, ako je sustav jednadžbi (5.2), (5.3) suglasan, onda je $\sum_{i=1}^{m} a_{i}=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}=\sum_{j=1}^{n} \sum_{i=1}^{m} x_{i j}=\sum_{j=1}^{n} b_{j}$ to jest, uvjet (5.1) je nužan uvjet suglasnosti. Da bi se dokazalo da je taj uvjet i dovoljan za suglasnost sustava jednadžbi (5.2), (5.3), treba dokazati da su vrijednosti varijabli

$$
x_{i j}=\frac{a_{i} b_{i}}{\sum_{i=1}^{m} a_{i}} \quad i=1,2, \ldots, m ; \quad j=1,2, \ldots, n
$$

rješenja sustava jednadžbi (5.2), (5.3).
Zaista, ako se ta vrijednost za $x_{i j}$ uvrsti u jednadžbu:
itu polja količine transporta $x_{i j} \quad$ transporta $c_{i j}$, a u desnom donjem $k i$
problema veličine $x_{i j}, i=1,2, \ldots, m$;
si plan transporta ako zadovoljavaju sljedeća

Za zatvoreni model transportnog $\cdot j=1,2, \ldots, n$ čine dopustivi ili mogur ograničenja:
$, 2, \ldots, m$
$, 2, \ldots, n$
$i ; j=1,2, \ldots, n$

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i j}=a_{i}, \quad i=1 \\
& \sum_{i=1}^{m} x_{i j}=b_{i}, \quad j=1 \\
& x_{i j} \geq 0 ; i=1,2, \ldots, n
\end{aligned}
$$

$$
\sum_{j=1}^{m} x_{i j}=\frac{\sum_{i=1}^{m} a_{i} b_{j}}{\sum_{i=1}^{m} a_{i}}=b_{i} \frac{\sum_{i=1}^{m} a_{i}}{\sum_{i=1}^{m} a_{i}}=b_{j}
$$

Time je dokazano da je uvjet（5．1）i dovoljan uvjet za suglasnost sustava jednadžbi（5．2），（5．3）．

Zbog uvjeta（5．1），jednadžbe（5．2）i（5．3），kojih ima $m+n$ ，nisu nezavisne． Zaista，zbrajajući jednadžbe（5．2），a zatim jednadžbe（5．3），dobiva se isti rezultat zbog uvjeta（5．1），što znači da je broj linearno nezavisnih veza jednak najviše $m+n-1$ ．Može se pokazati da je rang matrice sustava jednadžbi（5．2），（5．3） lednak，$r=m-t-n-1$ ndakla sliiadi da so $m+n-1$ hatiřnih variiahli mnnu
 （3）

－wavostan

．．山品禺s，

Prema dijagonalnoj metodi, prvo se određuje vrijednost varijable x_{11} na sljedeći način:

$$
x_{11}=\min \left\{a_{1}, b_{1}\right\}=\min \{36,13\}=13
$$

Kao što se vidi, prvo ishodište može isporučiti 36 jedinica tereta, a prvo nocrastifore"

(102z
 - Nonviandam

Zbog zahtjeva metoda rješavanja transportnog problema uvijek će biti pogodno da je $m+n-1$ bazičnih varijabli, makar umjesto neke od njih stajale i nule. Zbog toga je dovoljno sasvim neznatno izmijeniti ponudu i potražnju, tako da se jednakost $\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}$ ne promijeni.

Na odgovarajučim će se mjestima, umjesto nulth dostava najčešće stavljati, veličina ε (epsilon), pa će se tek po nalaženju optimalnog plana uzeti $\varepsilon=0$.

U ovom primjeru (tablica 5.3), početni će se transportni plan malo izmijeniti tako da će se svakoj ponudi dodati ε, a zadnjoj potražnji $m \cdot \varepsilon$, u ovom slučaju $\mathrm{b}_{5}=27+4 \varepsilon$. S tim izmjenama metodom najmanje cijene je bazični plan s $m+n-1=4+5-1=8$ dostava (pozitivnih bazičnih varijabli) u tablici 5.4.

Tablica 5.4

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	$a_{i}$$36+\varepsilon$
I_{1}	5	12	1	4 (21)	13	
l_{2}	7 $8-2$	8	14	6	$\begin{array}{\|l\|} \hline 5 \\ 15+36 \end{array}$	$23+\varepsilon$
1_{3}	15 $5+$	4	2	7	9	$29+\varepsilon$
I_{4}	6	11	5	16		$12+\varepsilon$
b_{i}	13	24	15	21	$27+4 \varepsilon$	

5.2.4 VAM metoda (Vogelova metoda)

Naziv ove metode čine početna slova riječi u nazivu na engleskom jeziku: Vogel's Approximation Method. Ova metoda dobivanja početnog bazičnog plana je najslożenija, ali se njom dobiva plan blizi optimalnom nego što se dobije drugim metodama. Zbog toga se ona preporučuje pri rješavanju transportnog problema vecih dimenzija.

Razmotrit će se ova metoda na istom primjeru iz 5.2.1 (tablica 5.5):

Tablica 5.5

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	a_{i}, Δ_{i}	
1	5	12	1	4	13		
I_{2}	7	8	14	6	5	23	1
I_{3}	15	4	2	7	9	29	2
14	6	11	5	16	3	12	2
b_{i}	13	24	15	21	27		
Δ_{j}	1	4	1	2	2		

U svakom retku i stupcu nađe se razlika dvaju najmanjih brojeva $\Delta_{i} i \Delta_{j}$. Zapišu se ti brojevi desno od ponuda i ispod potražnji. Tako je za prvi redak razlika 4-1 = 3, za drugi redak 6-5 = 1, za prvi stupac 6-5 = 1 i tako redom; od dobivenih brojeva $\left\{\Delta_{i}, \Delta_{i}\right\}$ nađe se najveci tj. $\max \{3,1,2,2,1,4,1,2,2\}=4$.

Najveća razlika je za drugi stupac. U tom stupcu odredi se polje s najmanjom cijenom. To je polje (3,2), i tu se stavi maksimalno mogući teret. To je $\min \{24,29\}=24$. Tako se zadovolji potražnja drugog stupca (tablica 5.6).

Tablica 5.6

	O_{1}	O_{2}		O_{4}	O_{5}	a_{i}	Δ_{i}
l_{1}	5		1	4	13	36	3
I_{2}	7		14	6	5	23	1
I_{3}	15		2	7	9	5	5
14	6		5	16	3	12	2
b_{j}	13			21	27		
Δ_{i}	1	-		2	2		

U sljedećem koraku ponovno se traži razlika jediničnih cijena u svakom retku i stupcu, osim u drugom stupcu koji je riješen (zbog toga je osjenčen). Razlike Δ_{i} i Δ_{j} su napisane desno i dolje u tablici 5.6. Najveća razlika je u trećem retku 5, polje s najmanjom cijenom je $(3,3)$ i na to se polje stavi maksimalno mogući teret

$$
\min \{15,29-24=5\}=5
$$

Tako je potpuno iscrpljena ponuda trećeg retka. U tablici 5.7 su dvije bazične varijable, odnosno rijeṡen je drugi stupac u prvom koraku i treći redak u drugom koraku.

Tablica 5.7

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	a_{i}	Δ_{i}
1	5	[12]	1	4	13	36	3
I_{2}	7		14	6	5	23	
1_{3}		(2)		有			
14	6		5	16	3	12	2
b_{i}	13		10	21	27		
Δ_{i}	1	-	4	2	2		

U tablici 5.7 ponovno se nađu razlike za svaki redak i stupac koji nisu potpuno iscrpljeni. Najveća razlika je u trećem stupcu, 4, a polje s najmanjom cijenom je (1,3). Tu se stavi maksimalno mogući teret:

$$
\min \{36,15-5\}=10
$$

Na tom koraku je potpuno zadovoljena potražnja trećeg stupca (tablica 5.8).

Tablica 5.8

Nove razlike redaka su $\Delta_{i}=\{1,1,-, 3\}$ a stupaca $\Delta_{i}=\{1,-,-, 2,2\}$. Najveća razlika je za četvrti redak 3, a najmanja jedinična cijena je za polje $(4,5)$. Tu se stavi maksimalno moguć teret $\min \{12,27\}=12 \mathrm{i}$ tako je iscrpljena ponuda četvrtog retka (tablica 5.9).

Tablica 5.9

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	a_{i}	Δ_{i}
l_{1}	5	19		4	13	26	1
l_{2}	7	8	$1 \text { khy }$	6	5	23	1
I_{3}	15			?	98		-
I_{4}	6		5	6			-
b_{i}	13			21	15		
Δ_{j}	2	-	-	2	8		

U tablici 5.9 najveća je razlika u petom stupcu, a polje s najnižom jediničnom cijenom je polje (2,5). Tu se stavlja maksimaini mogući teret 15. Tako je riješen peti stupac, zadovoljena potražnja (tablica 5.10).

Tablica 5.10

Razlike jediničnih cijena u tablici 5.10 za prvi i četvrti stupac su jednake 2. Uzima se polje (1,4) s najnižom cijenom i tu stavlja maksimalni teret 21 te tako riješi četvrti stupac (tablica 5.11).

Tablica 5.11

Od prve ponude ostalo je još 5 jedinica a od druge 8 . Na polje $(1,1)$ stavi se 5 a na polje $(2,1) 8$. Tako se dobije početno bazično rješenje u tablici 5.12.

Tablica 5.12

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	a_{i}
I_{1}	5	12	$\begin{array}{ll} 1 & 10 \\ & \\ \hline \end{array}$		13	36
l_{2}	7 (8)	8	14	6	5 (15)	23
I_{3}	15	4 (24)	2 (5)	7	9	29
I_{4}	6	11	5	16	3 (12)	12
b_{1}	13	24	15	21	27	

Troškovi transporta su $\mathbf{T}=392$. Vidi se da je ukupni trošak transporta za dobiveno početno bazično jješenje u tablici 5.12 manji od tros̃kova koji su dobiveni pomoću prethodne dvije metode.

Općenito, početno rješenje dobiveno pomoću VAM metode je najbliže optimalnom rješenju.

Ovdje je svaki korak VAM metode prikazan, zbog postupnosti, posebnom tablicom. Praktično bi početno bazično jješenje bilo određeno VAM metodom kao u tablici 5.13.

Tablica 5.13

Broj dostava, baziẽnih varijabli $\left(x_{i}>0\right)$ jednak je $m+n-1=4+5-1=8$, znači transportni problem ne degenerira.

5.3 Metode određivanja optimainog rješenja transportnog problema

Sve metode rješavanja transportnog problema provjeravaju prvo je li početno bazično rješenje optimalno ili nije. Ukoliko početno bazično rješenje nije optimalno, svakom od metoda se pokazuje kako se prelazi na bolje bazično rješenje, to jest na bazično rješenje koje osigurava smanjenje ukupnih troškova transporta.

5.3.1 Metoda raspodjele

Metoda raspodjele (engleski: Distribution Method) nastala je u SAD-u krajem 40-ih godina prošlog stoljeća i sa svojim modifikacijama jedna je od najjednostavnijih metoda za ručno rješavanje transportnog problema.

Da bi se pokazala ova metodu uzet će se primjer iz točke 5.2 .1 gdje je dijagonalnom metodom određeno početno bazično rješenje. Dobiveno početno bazično rješenje u tablici 5.2 je nedegenerirano rješenje i ima $m+n-1=4+5-1=8$ pozitivnih varijabli.

Ukupni troškovi transporta po ovom početnom bazičnom rješenju jednaki su $\mathrm{T}_{0}=870$ novčanih jedinica.

Da bi se provjerilo je li dobiveni bazični plan optimalan, potrebno je za svako
polje tablice, u kojem nema tereta ($x_{i j}=0$), formirati tzv. lanac.
Uzima se tablica 5.2 kao početna tablica 5.14.
Tablica 5.14

U tablici 5.14 polje (1,3) nema tereta, tj. $x_{13}=0$. Želi se odrediti lanac po sljedećoj logici. Ako se na polje (1,3) stavi jedinica tereta, treba platiti $\mathrm{c}_{13}=1$ novčanih jedinica. Da bi se sačuvala ravnoteża između ponude i potražnje mora se u prom retku oduzeti jedinicu tereta ili od $x_{11}=13$ ili od $x_{12}=23$. Ako se oduzme od $x_{11}=13$, tada se u tom stupcu nema gdje dodati jedinicu tereta. U drugom stupcu su dvije bazične varijable, pa će se u polju $(1,2)$ oduzeti jedinica tereta a na polje $(2,2)$ dodati. Da se ne poremeti ponuda $a_{2}=23$, na polje $(2,3)$ oduzme se jedinica tereta. Za polje $(1,3)$ lanac je oblika

Ispod jediničnih troškova u polju (1,3) stavlja se predznak + (plus), a ispred sljedeće cijene u lancu (kreće se u proizvoljnu stranu lanca od početnog polja) predznak - (minus), zatim + itd. Slijedi se logika da se u svakom retku i svakom stupcu lanca doda i oduzme jedinični teret. Tako se neće poremetiti ravnoteža ponude i potražnje. Sve jedinične cijene u lijevom gornjem kutu polja jednog lanca se zbrajaju uzimajući u obzir i stavljene predznake. Dobiveni zbroj se naziva karakteristikom lanca. Nju će se pisati u polje za koje je lanac formiran. Karakteristika lanca za polje $(1,3)$ je jednaka

$$
k_{13}=c_{13}-c_{12}+c_{22}-c_{23}=1-12+8-14=-17
$$

Sada se uviđa što znači lanac. On pokazuje polja u kojima se mora izvršiti izmjena bazičnih varijabli (dostava) ako se preko polja koje nije bilo u bazičnom rješenju uvede dostava od ishodišta do određenog odredišta.

Razmotrit će se dalje kakav utjecaj na transportne troškove imaju izmjene u dostavama. Neka je, na primjer, uvedena jedinica robe za prijevoz u polje (1,3). Ukupna cijena se poveća za jednu novčanu jedinicu (jer je $c_{13}=1$), ona se poveća još za 8 jer se dodaje jedinica robe u polje (2,2), ali se i smanjuje za 12 i 14 novčanih jedinica robe u poljima $(1,2) i(2,3)$. Prema tome, promjena cijene iznosi $1-14+8-12=-17$.

Broj - 17 je, dakle, karakteristika lanca za polje (1,3) i pokazuje koliko se novčanih jedinica uštedi ako se uvede jedinična dostava u polje $(1,3)$.

Očigledan zaključak:
Pojava najmanje jedne negativne karakteristike pokazuje da bazični plan nije optimalan.

Da bi se odabralo polje koje najviše smanjuje troškove transporta, treba izračunati karakteristike lanaca za polja gdje nisu baziĕne varijable. Tako su nezaokruženi brojevi u tablici 5.14 dobiveni na sljedeći način:

$$
\begin{aligned}
& k_{13}=1-12+8-14=-17 \\
& k_{14}=4-12+8-6=-6 \\
& k_{15}=13-12+8-6+7-9=1 \text { - lanac nacrtan } u \text { tablici } 5.14 \\
& k_{21}=7-8+12-5=6 \\
& k_{25}=5-6+7-9=-3 \\
& k_{31}=15-7+6-8+12-5=13 \\
& k_{32}=4-7+6-8=-5 \\
& k_{33}=2-7+6-14=-13 \\
& k_{41}=6-3+9-7+6-8+12-5=10 \\
& k_{42}=11-3+9-7+6-8=8 \\
& k_{43}=5-3+9-7+6-14=-4 \\
& k_{44}=16-3+9-7=15
\end{aligned}
$$

U tablici 5.14 je ukupno šest negativnih karakteristika lanca za polja gdje nema kružića. Polje (1,3) ima najmanju od negativnih karakteristika (-17). To znači da promjene po lancu polja $(1,3)$ najviše umanjuju ukupne transportne troškove po jedinici tereta. Zato će se u polje $(1,3)$ staviti najveci mogući teret; jednak najmanjoj od dostava u poljima s negativnim jediničnim cijenama u lancu. U ovom slučaju u poljima $(1,2)$ i $(2,3)$ može se oduzeti $\min \{15,23\}=15$ jedinica robe te istu količinu dodati u poljima $(1,3)$ i $(2,2)$. Na taj način dobiva se novi baziěni plan transporta (tablica 5.15).

Tablica 5.15

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	a_{i}
					13	36
1	(13)	(8)	(15)	-6	- 1	
I_{2}	76	$\begin{array}{ll} 8 \\ \hline \end{array}$	$\begin{array}{\|ll} \hline 14 & 17 \\ \hline \end{array}$		5	23
13	$15 \quad 13$	${ }^{4}-5$	24	(14)	9 (15)	29
I_{4}	6	11	$5 \quad 13$	$16 \quad 15$	(12)	12
b_{1}	13	24	15	21	27	

Za bazični plan u tablici 5.15 ukupni transportni troškovi su $\mathrm{T}_{1}=615$ novčanih jedinica, a T_{0} bilo je 870 novčanih jedinica.

Dobiven je u tablici 5.15 bolji plan transporta, s manjim ukupnim troškovima, odnosno sada su smanjeni troškovi transporta za $870-615=255$ novčanih jedinica, što je isto $17 \cdot 15=255$.

Kao što je uočeno lanac predstavlja zatvoreni poligon u čijem je jednom vrhu jedinična cijena polja za koji se lanac formira, dok su u ostalim vrhovima poligona cijene polja (i,j) gdje je $x_{i j}>0$. Broj vrhova svakog lanca je paran i najmanje jednak 4, a najviše $m+n$. Za svako polje tablice bez tereta može se formirati samo jedan lanac.

Ponavlja se isti postupak provjere optimalnosti bazičnog plana. Računaju se karakteristike lanaca, što je upisano u tablici 5.15 u polja gdje nema dostava:

$$
\begin{aligned}
& k_{14}=4-12+8-6=-6 \\
& k_{15}=13-12+8-6+7-9=1 \\
& k_{21}=7-8+12-5=6 \\
& k_{23}=14-1+12-8=17 \\
& k_{25}=5-6+7-9=-3 \\
& k_{31}=15-7+6-8+12-5=13 \\
& k_{32}=4-7+6-8=-5 \\
& k_{33}=2-7+6-8+12-1=4 \\
& k_{41}=6-3+9-7+6-8+12-5=10 \\
& k_{42}=11-3+9-7+6-8=8 \\
& k_{43}=5-3+9-7+6-8+12-1=13 \\
& k_{44}=16-3+9-7=15
\end{aligned}
$$

U tablici 5.15 su tri polja s negativnim karakteristikama lanca; na polju (1,4) najmanji je negativni broj. Teret se oduzima spolja (1,2) i $(2,4)$ odnosns traži se minimum $\min \{8,7\}=7$ itaj se teret doda poljima $(1,4) i(2,2)$ (tablica 5.16).

Tablica 5.16

Ukupni troškovi za bazični plan u tablici 5.16 , nakon druge iteracije $T_{2}=573$, kao što se vidi $T_{2}=573<T_{1}=615<T_{0}=870$, smanjenje je $42=6.7$ novčanih jedinica. Ne može se znati da li je bazično rješenje u tablici 5.16 optimalno dok se ne izračunaju karakteristike lanaca. Izračunate karakteristike lanaca napisane su u tablici 5.16 u polja bez dostava:

$$
\begin{aligned}
& k_{15}=13-4+7-9=7 \\
& k_{21}=7-8+12-5=6 \\
& k_{23}=14-1+12-8=17 \\
& k_{25}=5-8+12-4+7-9=3 \\
& k_{31}=15-7+4-5=7 \\
& k_{32}=4-7+4-12=-11 \\
& k_{33}=2-7+4-1=-2 \\
& k_{41}=6-3+9-7+4-5=4 \\
& k_{42}=11-3+9-7+4-12=2 \\
& k_{43}=5-3+9-7+4-1=7 \\
& k_{44}=16-3+9-7=15
\end{aligned}
$$

U tablici 5.16 su dvije negativne karakteristike lanaca; bazični plan nije optimalan. Plan transporta će se pobolišati ako se na polje (3,2) stavi maksimalni mogući teret, a to je $\min \{14,1\}=1$. Teret se oduzima na polju $(3,4)$ $i(1,2)$ a dodaje poljima $(1,4) i(3,2)$. Novi bazični plan prikazan je u tablici 5.17.

Tablica 5.17

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	a_{i}
1	(13)	$12 \quad 11$	(15)	(8)	$13 \quad 7$	36
I_{2}	$7-5$		${ }^{14} 6$	$\begin{array}{\|ll\|} \hline 6 & \\ \hline & -5 \\ \hline \end{array}$	$5-8$	23
I_{3}	157		$\begin{array}{\|ll} \hline 2 & \\ \hline \end{array}$	(13)	$\xrightarrow{9} \text { (15) }$	29
14	6 4	$\begin{array}{ll}11 & \\ & 13\end{array}$		$\begin{array}{ll} 16 & \\ & 15 \end{array}$	3 (12)	12
b_{i}	13	24	15	21	27	

U trećoj iteraciji trošak je $T_{3}=573-1.11=562$ novčanih jedinica. Da se provjeri optimalnost, računaju se karakteristike lanaca:

$$
\begin{aligned}
& k_{12}=12-4+7-4=11 \\
& k_{15}=13-4+7-9=7 \\
& k_{21}=7-8+4-7+4-5=-5 \\
& k_{23}=14-8+4-7+4-1=6 \\
& k_{24}=6-8+4-7=-5 \\
& k_{25}=5-8+4-9=-8 \\
& k_{31}=15-7+4-5=7 \\
& k_{33}=2-7+4-1=-2 \\
& k_{41}=6-3+9-7+4-5=4 \\
& k_{42}=11-3+9-4=13 \\
& k_{43}=5-3+9-7+4-1=7 \\
& k_{44}=16-3+9-7=15
\end{aligned}
$$

Postoje četiri negativne karakteristike; plan transporta nije optimalan. Ukupni troškovi transporta će se smanjiti ako se u polje (2,5) stavi maksimalni teret, tj. $x_{25}=\min \{23,15\}=15$. Novo bazični plan je u tablici 5.18.

Tablica 5.18

	O_{1}	O_{2}	O_{3}	,	O_{5}	a_{i}
1	5	$\begin{array}{ll} 12 & \tag{8}\\ & 11 \end{array}$	$\longdiv { 1 }$ (15)	4	13.15	36
I_{2}	$\begin{array}{ll}7 & \\ & -5\end{array}$	8 (8)	$14 \quad 6$	$\begin{array}{rr}6 & \\ & -5\end{array}$	5 (15)	23
t_{3}	15	$\begin{equation*} 4 \quad 16 \tag{13} \end{equation*}$	2 -2	7	98	29
I_{4}	$6-4$	11.	$5-1$	167	3 (12)	12
b_{j}	13	24	15	21	27	

Kod četvrte iteracije troškovi su $T_{4}=562-8.15=442$ novčanih jedinica.
Ponavlja se postupak računanja karakteristika lanaca:

$$
\begin{aligned}
& k_{12}=12-4+7-4=11 \\
& k_{15}=13-4+7-4+8-5=15 \\
& k_{21}=7-5+4-7+4-8=-5 \\
& k_{23}=14-8+4-7+4-1=6 \\
& k_{24}=6-7+4-8=-5 \\
& k_{31}=15-7+4-5=7 \\
& k_{33}=2-7+4-1=-2 \\
& k_{35}=9-5+8-4=8 \\
& k_{41}=6-3+5-8+4-7+4-5=-4 \\
& k_{42}=11-3+5-8=5 \\
& k_{43}=5-3+5-8+4-7+4-1=-1 \\
& k_{44}=16-3+5-8+4-7=7
\end{aligned}
$$

Transportni plan u tablici 5.18 nije optimalan jer postoji pet negativnih karakteristika lanaca. Polja $(2,1)$ i $(2,4)$ imaju najmanje karakteristike. Na polje $(2,1)$ stavit će se maksimalno mogući teret $\mathrm{t} . x_{21}=\min \{13,13,8\}=8$. Novi bazični transportni plan prikazan je u tablici 5.19.

	O_{1}	O_{2}		O_{4}	O_{5}	a_{i}
l_{1}	(5)	$12 \quad 11$	$\longdiv { 1 }$		$13 \quad 10$	36
I_{2}	7 (8)	85		$\left.\begin{array}{\|ll\|} \hline 6 & 1 \\ & 0 \end{array} \right\rvert\,$		23
13	157		$\begin{array}{ll} 2 & -27 \end{array}$	$\xrightarrow{7} \text { (5) }$	93	29
I_{4}	61	11.9	54	$\begin{array}{ll} 16 & \\ & 12 \end{array}$		12
b_{i}	13	24	15	21	27	

$T_{5}=442-5 \cdot 8=442-40=402$ novčanih jedinica.
Karakteristike lanaca će omogućiti da se zaključi je li nakon pete iteracije transportni plan optimalan ill nije. Računaju se karakteristike lanaca i upisuju u tablicu 5.19:

$$
\begin{aligned}
& k_{12}=12-4+7-4=11 \\
& k_{15}=13-5+7-5=10 \\
& k_{22}=8-7+5-4+7-4=5 \\
& k_{23}=14-7+5-1=11 \\
& k_{24}=6-7+5-4=0 \\
& k_{31}=15-7+4-5=7 \\
& k_{33}=2-7+4-1=-2 \\
& k_{35}=9-7+4-5+7-5=3 \\
& k_{41}=6-3+5-7=1 \\
& k_{42}=11-3+5-7+5-4+7-4=9 \\
& k_{43}=5-3+5-7+5-1=4 \\
& k_{44}=16-3+5-7+5-4=12
\end{aligned}
$$

Kako je u polju $(3,3)$ karakteristika lanca k_{33} negativna, transportni plan u tablici 5.19 nije optimalan. Troškovi transporta će se smanjiti ako se na polje $(3,3)$ stavi najveći moguči teret, u ovom slučaju $x_{33}=\min \{5,15\}=5$. Novo bazično rješenje je prikazano u tablici 5.20.

Tablica 5.20

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	a_{i}
l_{1}	5	$\begin{equation*} 12 \quad 9 \tag{21} \end{equation*}$	1 (10)	4	130	36
l_{2}	7 (8)	83	$\begin{array}{ll} 14 & \\ & 11 \end{array}$	6	(15)	23
l_{3}	159	$\begin{equation*} 4 \tag{24} \end{equation*}$	2 (5)	$7 \quad 2$	95	29
I_{4}	6 1	$11 \begin{array}{ll}11 & \\ & 8\end{array}$	5	$\begin{array}{ll} \hline 16 & \\ & 12 \end{array}$	(12)	12
b_{i}	13	24	15	21	27	

Za plan transporta u tablici 5.20 ukupni su transportni troškovi $T_{6}=402-2.5=$ 392 novčanih jedinica.

Ponavlja se postupak računanja karakteristika lanca za šestu iteraciju, tj. za plan transporta u tablici 5.20:

$$
\begin{aligned}
& k_{12}=12-4+2-1=9 \\
& k_{15}=13-5+7-5=10 \\
& k_{22}=8-7+5-1+2-4=3 \\
& k_{23}=14-1+5-7=11 \\
& k_{24}=6-7+5-4=0 \\
& k_{31}=15-2+1-5=9 \\
& k_{34}=7-4+1-2=2 \\
& k_{35}=9-5+7-5+1-2=5 \\
& k_{41}=6-3+5-7=1 \\
& k_{42}=11-3+5-7+5-1+2-4=8 \\
& k_{43}=5-3+5-7+5-1=4 \\
& k_{44}=16-3+5-7+5-4=12
\end{aligned}
$$

Kako u tablici 5.20 nema negativnih karakteristika, optimalan je transportni plan:

$$
\begin{array}{lll}
\dot{x_{11}}=5 & \dot{x_{13}}=10 & \dot{x_{14}}=21 \\
\dot{x_{21}}=8 & \dot{x_{25}}=15 & \\
\dot{x_{32}}=24 & \dot{x_{33}}=5 & \\
\dot{x_{45}}=12 &
\end{array}
$$

s ukupnim transportnim troškovima $T=\frac{24}{392}$ novčane jedinice.

Do optimalnog rješenja došlo se nakon šest iteracija. Uzet je početni bazični plan transporta dobiven dijagonalnom metodom iz tablice 5.2.

Da je početni bazični plan uzet iz tablice 5.13 , gdje je on nađen VAM metodom, vidi se da je to odmah optimalni plan transporta s ukupnim troškovima $\mathrm{T}_{0}=392$. Općenito, VAM metoda određivanja početnog bazičnog plana je bliža optimalnom rješenju i nju treba koristiti pri ručnom rješavanju transportnog problema. Elektronički programi obično početno bazično rješenje određuju dijagonalnom metodom.

U tablici 5.20 , polje $(2,4)$ ima karakteristiku lanca nula. Ako se na to polje stavi $x_{24}=\min \{21,8\}=8$, dobiva se plan transporta prikazan u tablici 5.21. Taj plan transporta ima iste ukupne troškove transporta 392. Planovi u tablici 5.20 i 5.21 su oba optimalna s istom vrijednošću funkcije cilja $\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} x_{i j}=392$ novčane jedinice.

Tablica 5.21

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	
I_{1}	(13)	12	(10)	$\begin{array}{lll} 4 & 13 \\ \hline \end{array}$	13	36
I_{2}	7	8	14	(8)	(15)	23
l_{3}	15	(2)		7	9	29
14	6	11	5	16		12
b_{j}	13	24	15	21	27	

Ako se početno bazično jješenje odredi metodom najmanje cijene, onda je treće baziěno rješenje optimalno rješenje (što zainteresirani čitalac može provjeriti).
(Ova stranica je ostavljena prazna)

5.3.2 Metoda koeficijenata ili modificirana metoda distribucije (MODI)

Nedostatak metode raspodjele sastoji se u tome što treba tražiti lanac za sva polja gdje je $x_{i j}=0$ i računati njihove karakteristike. Na primjer, ako treba naći optimalni plan kod transportnog problema dimenzija 10×10, to jest kod transportnog problema gdje je 10 ishodišta i 10 odredišta, tada pri određ̛ivanju svakoga bazičnog plana treba formirati $81[m \cdot n-(m+n-1)=(m-1)(n-1)=9.9=81]$ lanaca i računati njihove karakteristike. Kako i broj iteracija od početnoga bazičnog plana do optimalnog plana može biti velik, vidi se da je metoda raspodjele, iako veoma jednostavna, nepogodna zbog ogromnog posla računanja.

Metoda koeficijenata ili modificirana metoda distribucije - MODI (Modification Distribution Method) predstavlja pojednostavljenje metode raspodjele, koju je na osnovi opće simpleks metode razradio Dantzig [3].

Metoda koeficijenata ima tu prednost što ne treba konstruirati lanac za sva polja, bez tereta ($x_{i j}=0$), jer se pomoću koeficijenata redaka i stupaca neposredno dobiju karakteristike lanaca. A sama konstrukcija lanca s najmanjom negativnom karakteristikom služi za preraspodjelu dostava u novom bazičnom planu. Provjera optimalnosti bazičnog plana izvodi se samo pomoću koeficijenata redaka i stupaca. Ti koeficijenti se biraju tako da njihov zbroj bude jednak jediničnoj cijeni u polju s bazičnim rješenjem ($x_{i j}>0$), koja se nalazi na presjeku stupca i retka čiji se koeficijenti zbrajaju. Koeficijenti mogu biti pozitivni, negativni i jednaki nuli.

Označe se koeficijenti retka s $\alpha_{i}(i=1,2, \ldots, m)$ i koeficijenti stupca s $\beta_{j}(j=$ $1,2, \ldots, n$). Jedinične cijene uz bazične varijable zadovoljavaju relaciju

$$
c_{i j}=\alpha_{i}+\beta_{i j}
$$

Kako bazičnih varijabli ima $m+n-1$, a nepoznatih koeficijenata redaka \mathbf{i} stupaca $m+n$ jedan se koeficijen odredi proizvoljno. Obično se uzima da je koeficijent prvog retka jednak nuli, to jest $\alpha_{t}=0$, mada se tom koeficijentu može dati i proizvoljna druga vrijednost.

Za transportni problem u tablici 5.22 , gdje je dano i početno bazično rješenje dobiveno dijagonalnom metodom, naći će se optimalno rješenje koristeći metodu koeficĩjenata:

Tablica 5.22

Prvo je, u ovom primjeru, odabrano $\alpha_{1}=0$. Prvi redak s teretom, $x_{11}=16$, povezan je s prvim stupcem, pa iz uvjeta $c_{11}=\alpha_{1}+\beta_{1}$, odnosno $5=0+\beta_{1}$ sijedi $\beta_{1}=5$. Prvi stupac povezan je s drugim retkom, s bazičnom varijablom $x_{21}=21$, pa je $c_{21}=7=\alpha_{2}+\beta_{1}=\alpha_{2}+5$, odakle je $\alpha_{2}=2$. Prvi stupac je također povezan s trećim retkom pa je $c_{31}=2=\alpha_{3}+\beta_{1}=\alpha_{3}+5$, odakle je $\alpha_{2}=-3$. Treći redak je povezan s drugim stupcem u polju (3,2), pa je ispunjeno $c_{32}=8=\alpha_{3}+\beta_{2}=$ $=-3+\beta_{2}$, odakle je $\beta_{2}=11$.

Dalje je
jsti baziěnog
timalan.
125

Iz ovog teorema neposredno slijedi jednostavan kriterij optimalnı plana:

Ako su razlike

$$
k_{i j}=c_{i}-\left(\alpha_{i}+\beta_{i}\right) .
$$ pozitivne za polja (i,j) gdje je $x_{i j}=0$, onda je takav bazični plan of

Razlika $k_{i j}=c_{i j}-\left(\alpha_{i}+\beta_{j}\right)$ jednaka je karakteristici lanca polja (i,j) gdje je $x_{\text {ii }}=0$. Ako se uzme, na primjer, polje (1,2) razlika $k_{12}=c_{12}-\left(\alpha_{1}+\beta_{2}\right)=4-(0+$ $+11)=-7$ i izračuna karakteristika lanca $(1,2)-(1,1)-(3,1)-(3,2)$, to je $k_{12}=$ $4-5+2-8=-7$.

I kao kod metode raspodjele, bazični plan se pobolišava sve dok se pojavijuje makar jedna negativna karakteristika.

Izračunajmo karakteristike praznih polja iz tablice 5.22:

$$
\begin{aligned}
& (1,2): k_{12}=c_{12}-\left(\alpha_{1}+\beta_{2}\right)=4-(0+11)=-7 \\
& (1,3): k_{13}=16-(0+9)=7 \\
& (2,2): k_{22}=3-(2+11)=-10 \\
& (2,3): k_{23}=4-(2+9)=-7 \\
& (3,3): k_{33}=7-(-3+9)=1 \\
& (4,1): k_{41}=11-(-6+5)=12 \\
& (4,3): k_{43}=1-(-6+9)=-2 \\
& (5,1): k_{51}=13-(-5+5)=13
\end{aligned}
$$

Kako je najmanja negativna karakteristika polja (2,2), po lancu ovog polja izračunat če se promjene dostava. Lanac polja (2,2) spaja u svojim polja (2,1), $(3,1),(3,2)$. Velicina $x_{32}=14=\min \{14,21\}$ oduzima se od dostava u poljima $(2,1)$ i $(3,2)$, a dodaje se dostavama u poljima (2,2) i(3,1). Drugo bazično rješenje dano je u tablici 5.23 .

Tablica 5.23

	O_{1}	O_{2}	O_{3}	a_{i}	α_{4}
1	5 (16)		16	16	0
I_{2}	7 (7)	3	4	21	2
l_{3}	2 (3)	8	7	33	-3
14	11	5 (12)		12	4
I_{5}	13		$4{ }^{4} \quad 10$	18	5
b_{j}	56	34	10		
β_{1}	5	1	-1		

U tablici 5.23 ispisani su i koeficijenti redaka i stupaca. Karakteristike praznih polja su

$$
\begin{aligned}
& (1,2): k_{12}=4-(0+1)=3 \\
& (1,3): k_{13}=16-(0-1)=17 \\
& (2,3): k_{23}=4-(2-1)=3 \\
& (3,2): k_{32}=8-(-3+1)=10 \\
& (3,3): k_{33}=7-(-3-1)=11 \\
& (4,1): k_{41}=11-(4+5)=2 \\
& (4,3): k_{43}=1-(4-1)=-2 \\
& (5,1): k_{51}=13-(5+5)=3
\end{aligned}
$$

Kao što se vidi, u ovom drugom bazičnom rješenju samo je jedna negativna karakteristika za polje $(4,3)$. Lanac ovog polja je $(4,3)-(4,2)-(5,2)-(5,3) . \mathrm{Na}$ polje $(4,3)$ i $(5,2)$ doda se $x_{43}=10=\min \{12,10\}$ a na polja $(4,2)$ i $(5,3)$ oduzme. Novo bazično rješenje prikazano je u tablici 5.24.

Tablica 5.24

U tablici 5.24 izračunati su koeficijenti redaka α_{i} i stupaca β_{j}.
Karakteristike praznih polja su
$(1,2): k_{12}=4-(0+1)=3$
$(1,3): k_{13}=16-(0-3)=19$
$(2,3): k_{23}=4-(2-3)=5$
$(3,2): k_{32}=8-(-3+1)=10$
$(3,3): k_{33}=7-(-3-3)=13$
$(4,1): k_{41}=11-(4+5)=2$
$(5,1): k_{51}=13-(5+5)=3$
$(5,3): k_{53}=4-(5-3)=2$
Kako su sve karakteristike polja (i,j), gdje je $x_{i j}=0, u$ tablici 5.24 pozitivne, to je ovo treće bazično riešenje i optimalno. Ukupni troškovi transporta prema optimalnom planu jednaki su

$$
T_{\text {min }}=T_{3}=365 \text { novčanih jedinica }
$$

lz ovog primjera vidi se da se algoritam metode koeficijenata može shematski prikazati na sljedeći način:

Metoda koeficijenata praktično je identična metodi potencijala, koju je razradio početkom 40-ih godina prošlog stoljeća L.V. Kantoroviča [6]. Kantorovič je koeficijente redaka i stupaca nazvao potencijalima redaka i stupaca, pa metoda slijedi ovaj naziv.

Primjer s degeneracijom
Neka je dan transportni problem

Kako je $\sum_{i=1}^{3} a_{i}=1000$ i $\sum_{j=1}^{3} b_{j}=1000$, to je dani problern zatvoren. Jedan od početnih bazičnih programa, dobiven dijagonalnom metodom je

Tablica 5.25

Bazični program u tablici 5.25 ima četiri varijable različite od nule. Međutim, prema $m+n-1=3+3-1=5$, treba imati pet varijabli razlicitih od nule.

Dodajmo ponudama a_{1}, a_{2}, a_{3} proizvoljnọ malu veličinu ε i trécoj potražnji 3ε. Tako je dobivena tablica 5.26 u kojoj je naveden i jedan početni transportni plan.

Tablica 5.26

	O_{1}	O_{2}	O_{3}	a_{i}	α_{1}
$1 i$	$\longdiv { 1 }$	3	2	$300+\varepsilon$	0
I_{2}	5	${ }^{7} 250 t$	10	$250+\varepsilon$	4
I_{3}	3	$150-2$	3	$450+\varepsilon$	-2
b_{1}	300	400	$300+3 \varepsilon$		
$\beta{ }^{\text {j }}$	1	3	6		

Izračunati su koeficijenti redaka i stupaca: $\alpha_{1}=0, \beta_{1}=1, \alpha_{2}=4, \beta_{2}=3$, $\alpha_{3}=-2, \beta_{3}=6$.

Karakteristike polja bez tereta ($\mathrm{xij}_{\mathrm{ij}}=0$) su

$$
\begin{aligned}
& (1,3): k_{13}=2-(0+6)=-4 \\
& (2 ; 1): k_{21}=5-(4+1)=0 \\
& (2,3): k_{23}=10-(4+6)=0 \\
& (3,1): k_{31}=3-(-2+1)=4
\end{aligned}
$$

Negativna karakteristika je u polju (1,3). Napravit ce se preraspodjela po lancu $+(1,3) \rightarrow-(1,2) \rightarrow+(3,2) \rightarrow-(3,3)$. Na poljima gdje se oduzima teret najmanja vrijednost je $\varepsilon=\min \{\varepsilon, 300+3 \varepsilon\}$. Novo bazično rješenje prikazano je u tablici 5.27.

Tablica 5.27

Koeficijenti redaka i stupaca su: $\alpha_{1}=0, \beta_{1}=1, \alpha_{2}=8, \beta_{2}=-1, \alpha_{3}=2, \beta_{3}=2$. Karakteristike polja bez tereta su
$(1,2): k_{12}=3-(0-1)=4$
$(2,1): k_{21}=5-(8+1)=-4$
$(2,3): k_{23}=10-(8+2)=0$
$(3,1): k_{31}=3-(2+1)=0$
Kako je negativna karakteristika na polju (2,1), pravi se raspodjela po lancu $+(2,1) \rightarrow-(2,2) \rightarrow+(3,2) \rightarrow-(3,3) \rightarrow+(1,3) \rightarrow-(1,1)$. Na polje $(2,1)$ stavi se teret $x_{21}=\min \{250+\varepsilon, 300+2 \varepsilon, 300\}=250+\varepsilon$.

Treće bazično rješenje prikazano je u tablici 5.28.

Tablica 5.28

Karakteristike polja bez tereta su
$(1,2): k_{12}=3-(0-1)=4$
$(2,2): k_{22}=7-(4-1)=4$
$(2,3): k_{23}=10-(4+2)=4$
$(3,1): k_{31}=3-(2+1)=0$
Kako su sve karakteristike pozitivne ili nula transportni plan je optimalan. Ako se izostavi veličina ε, dobije se bazični program $x_{11}=50, x_{13}=250, x_{21}=250$, $x_{32}=400, x_{33}=50$ koji ima $m+n-1=3+3-1=5$ bazičnih varijabli i nije degeneriran.

Ukupni troškovi za taj bazični program su
$T=1.50+2.250+5.250+1.400+50.4=2400$ novčanih jedinica

5.4 Različite modifikacije transportnog problema

5.4.1 Otvoreni model transporta

Ako je ponuda jednaka potražnji tj. ako je

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

riječ je o zatvorenom problemu transporta. Međutim, u praksi se često događa da taj uvjet nije ispunjen, to jest često se sreće sa slučajem kada je ukupna ponuda veća od ukupne potrażnje:

$$
\sum_{i=1}^{m} a_{i}>\sum_{j=1}^{n} b_{j}
$$

ili kada je ukupna ponuda manja od ukupne potražnje:

$$
\sum_{i=1}^{m} a_{i}<\sum_{j=1}^{n} b_{i}
$$

Matematički model transportnog problema kod kojega ukupna ponuda nije jednaka ukupnoj potražnji naziva se otvoreni model transporta.

S formalne strane, otvoreni model transporta uvijek se može svesti na zatvoreni model.

U slučaju kad je ukupna ponuda veća od ukupne potražnje, uvodi se jedno fiktivno odredište. To znači da se tablica transportnog problema proširuje još jednim stupcem, pri čemu će potražnja toga novog odredišta bitit jednaka

$$
b_{n+1}=\sum_{i=1}^{m} a_{i}-\sum_{j=1}^{n} b_{j}
$$

Na taj način se u matematički model uvode nove varijable $x_{i, n+1} \geq 0, i=1,2, \ldots, m$.
U sluc̆aju kada je ukupna ponuda manja od ukupne potražnje, uvodi se fiktivno ishodište s kolicinom tereta

$$
a_{m+1}=\sum_{j=1}^{n} b_{i}-\sum_{i=1}^{m} a_{i}
$$

Sada se tu nove varijable $x_{m+1, j} \geq 0, j=1,2, \ldots, n$.
lako otvoreni model transporta ne stvara teškoće pri formalnom prijelazu na zatvoreni model, u praksi se pojavljuju izvjesna pitanja koja treba uzeti u obzir. Razmotrit će se slučaj kad je ukupna ponuda veća od potražnje. U tom slučaju, kao je već utvrdeno, treba uvestif fiktivno odredište, ili što je isto, dodati stupac u
transportnoj tablici, ali se odgovarajuće varijable $x_{i, n+1}$ uvode iu funkciju cilja (funkciju ukupnih troškova). Logično je sada postaviti pitanje: kako u funkciji cilja uvesti jedinične cijene $c_{1, n+1} i=1,2, \ldots, m$. Cesto se jednostavno stavlja $c_{i, n+1}=0$ $i=1,2, \ldots, m$, što je točno pod veoma specifičnim pretpostavkama. Na primjer, ako u ishodištima ima više robe nego što je potražnja stavljanjem $c_{i n+1}=0$ za
$i=1,2, \ldots, m$, jedan dio tereta ostaje u ishodištu i. Ukoliko u ishodištima postoje troškovi skladištenja koji su poznati i proporcionalni kolizini robe, tada je nužno da se u funkciji cilja ti troškovi uklope u odgovarajuće cijene $c_{i, n+1} i=1,2, \ldots, m$.

Razmatrani slučajevi otvorenog modela transporta sadrže i niz drugih problema praktične prirode, koji se pojavljuju pri konstrukciji matematičkog modela. Može se, na primjer, dogoditi da je unaprijed poznato da neko ishodište ne može uskladištiti robu, što znači da je od tih ishodišta nedopustiva "trasa" do fiktivnog odredišta.

Realno je razmotriti slučaj da u ishodištu ly može ostati dio robe pripremljen za transport. Drukčije rečeno, potrebno je osigurati da u optimalnom rješenju u ishodištu I_{i} ne ostane više tereta nego što to ishodište može zadržati u skladištu, ili, što je isto, uvodi se pretpostavka da se iz $I_{\text {i }}$ mora izvesti unaprijed određena količina robe.
U svezi s tim, ukupna količina robe u ishodištu I_{i}, jednaka $a_{\text {; }}$, dijeli se na dva dijela:

$$
a_{i}=a_{i}^{\prime}+a_{i}^{\prime \prime}
$$

gdje je a_{i}^{\prime} - količina tereta koja se mora otpremiti iz l_{i}, $a a_{i}^{\prime \prime}$ - količina tereta koja može ostati kao zaliha.

Primjer 1.
Neka je dan transportni problem u kojemu veličine $c_{i j}$ označavaju udaljenosti između ishodišta $I_{i} i$ odredišta O_{i} (tablica 5.29).

Tablica 5.29

					a_{i}
l_{1}	3	5	1	11	6
I_{2}	9	7	8	14	7
l_{3}	10	2	6	12	10
b_{i}	3 6 5 2 23				

Kako je $\sum_{i=1}^{3} a_{i}=23>\sum_{j=1}^{4} b_{i}=16$, uvodi se fiktivno odredište O_{5}.
Neka je poznato da se u prvom ishodištu ne može uskladištiti više od 2 jedinice robe. Zbog toga se umjesto ishodišta l_{i} formiraju dva ishodišta $l_{i}^{i} \|_{i}^{l} s$
količinama robe 4 i 2 . S obzirom na interpretaciju veličina $c_{i j}$ uzima se $c_{i, n+1}^{\prime}=M$ (gdje je M veliki ne specificirani broj), dok su ostali koeficijenti $\mathrm{c}_{\mathrm{i}, \mathrm{n+1}}=0$.

- Transformirani transportni problem prikazan je u tablici 5.30.

Tablica 5.30

	O_{1}		O_{2}	O_{4}		a_{i}
'	3	5	1	11	M	4
$1{ }^{\prime \prime}$	3	5	1	11	0	2
I_{2}	9	7	8	14	0	7
I_{3}	10	2	6	12	0	10
b_{i}	3					

To je sada problem transporta linearnog programiranja za koji se lako nađe optimalno rješenje.

U drugom slučaju, to jest u slučaju kada je ukupna potražnja veća od ukupne ponude, opet je prijelaz na zatvoreni model transporta, s formalne strane, vrlo jednostavan. Uvodi se fiktivno ishodište koje "isporuc̆uje" razliku između ukupne potražnje i ponude. Ali ni ovdje se u svakoj situaciji ne može ograničiti na formalno rješenje problema, jer ce se dogodi da se mora isporučiti cjelokupna tražena roba, što će se u matematičkom modelu morati uzeti u obzir.

Može se, na primjer, dogoditi da se određenom odredištu može poslati manje jedinica robe nego što potražuje, ali ne manje od unaprijed dogovorene količine. Sljedeći primjer ilustrira takvu situaciju.

Primjer 2.
Neka je dan transportni problem (tablica 5.31).
Tablica 5.31

Kao što se vidi, ovdje je $\sum_{i=1}^{3} a_{i}=25<\sum_{j=1}^{4} b_{j}=29$.
Potrebno je, dakle, uvesti fiktivno ishodiš̌te I_{4}, u kojemu će biti "ponuđeno" za -transport $29-25=4$ jedinice robe. Uvodi se i sljedeće ograničenje: u slučaju da drugo odredište ne bude potpuno podmireno u optimalnom planu, mora se osigurati najmanje tri jedinice robe. Da bi se to ograničenje ispunilo, uvode se dva odredišta umjesto O_{2}, naime odredište O_{2}^{\prime} potražuje 7-3=4 jedinice robe i O_{2}^{\prime} potražuje 3 jedinice robe. Očigledno, za vrijednosti C_{43} treba uzeti M , a za ostale vrijednosti $c_{4,}=0$. Praktično, umjesto M, u polju (4,3) ne stavlja se ništa, nego se to polje precrtava. Zatvoreni model transportnog problema prikazan je u tablici 5.32.

Tablica 5.32

	O_{1}	$\mathrm{O}_{2}{ }^{\prime}$	$\mathrm{O}_{2}^{\prime \prime}$	O_{3}	O_{4}	a_{i}
l_{1}	3	2	2	6	5	4
I_{2}	9	8	8	11	6	9
I_{3}	4	5	5	10	7	12
14	0	0		0	0	4
b_{j}	5	4	3	11	6	

Optimalno rješenje može se naći jednom od već prikazanih metoda.
Valja napomenuti da se na isti način postupa kada postoji više odredišta s ograničenjima kao što su bila u ovoj zadaći.

Još će se navesti jedan primjer otvorenog problema transporta: prebacivanje praznih vagona od żeljezničkih kolodvora gdje su istovareni do żeljezničkih kolodvora gdje ih treba prebacitit radi utovara. Najčešće je to otvoreni model, koji se svodi na zatvoreni transportni model.

Primjer 3.

Odreaivanje optimalnog plana prebacivanja praznih vagona [10].
Jedan od osnovnih zadataka u okviru racionalizacije teretnog prijevoza željeznicom je određívanje optimalnog plana prebacivanja praznih vagona iz kolodvora gdje su istovareni u kolodvor gdje se trebaju utovariti. Popularnije rečeno, to je zadatak nalaženja minimalnog "trčanja" praznih vagona.

Postoji velik broj načina na koji se može izvršiti prebacivanje praznih vagona. Osnovni kriterij za izbor plana prebacivanja praznih vagona je onaj plan pri kojemu su troṡkovi prebacivanja minimalni. Postavlja se zadatak nalażenja optimalnog plana prebacivanja praznih vagona za jednu promatranu mrežu, na
primjer, mrežu jednoga željezničkoga transportnog poduzeća koje ima n kolodvora.

Radi pojednostavljenja matematičkog modela, uvode se sljedeće pretpostavke:

1. Prazni vagoni, čije se prebacivanje želi matematički modelirati istog su tipa i uzajamno se mogu zamjenjivati.
2. Moguće je prebaciti prazne vagone iz jednog kolodvora promatrane mreže u proizvoljni drugi, a troškovi prebacivanja, po jednom vagonu iz svakoga kolodvora u proizvoljni drugi dani su i neka su jednaki $c_{i j}(i=1$, $2, \ldots, n ; j=1,2, \ldots, n$).
3. Vremena prebacivanja praznih vagona iz i-toga kolodvora u j-ti kolodvor jednaka su $t_{i j}$ dana ($t_{i j}=0$), $i=1,2, \ldots, n ; j=1,2, \ldots, n$ gdje se veličine $t_{i l}$ računaju s točnošću do jednog dana zaokruživanjem na gore.
4. Jednom u tijeku dana kolodvori šalju izvješće centru, odakle se rukovodi prebacivanjem praznih vagona, o broju potrebnih praznih vagona, odnosno o broju praznih vagona koje mogu poslati drugim kolodvorima.

Ako je $t_{i j} \leq m$ dana, može se formirati matematički model prebacivanja praznih vagona za m dana. Drugim riječima, može se za m dana planirati prebacivanje praznih vagona. Zbog toga, pretpostavlja se dalje, svaki kolodvor promatrane mreže šalje centru svoja potraživanja praznih vagona kao i svoju ponudu za svaki od m dana.

Označimo s $b_{j s}$ - potrebe j-toga kolodvora za praznim vagonima s-tog dana, $s=1,2, \ldots, m$. Neka su $a_{i r}$ ponude i-toga kolodvora praznih vagona r-tog dana, a s $a_{i o}$ označimo broj praznih vagona koji se na početku prvog dana stavlja na raspolaganje na i-tom kolodvoru. Na taj način, umjesto n odredišta ima m-n odredišta koja potražuju $b_{j s}, j=1,2, \ldots, n ; s=1,2, \ldots, m$ praznih vagona $i(m+$ 1). n ishodišta s ponudama $a_{i t}, i=1,2, \ldots, n ; r=0,1, \ldots, m$ praznih vagona.

Znači, ukupna ponuda praznih vagona iznosi

$$
A=\sum_{i=1}^{n} \sum_{r=0}^{m} a_{i r}
$$

a ukupna potražnja praznih vagona je

$$
B=\sum_{j=1}^{n} \sum_{s=1}^{m} b_{j s}
$$

U modelu transportnog problema osnovno ograničenje je oblika

$$
A=B
$$

Prilagodi se sada model prebacivanja praznih vagona za m dana na model transportnog problema $A=B$. Kako se u "zatvorenom" modelu transportnog problema zahtijeva da ponuda bude jednaka potražnji za slučaj $A>B$ dodaje se fiktivno odredište koje "potražuje" sljedeći broj vagona:

$$
\begin{aligned}
& b_{n+1,1}=\max \{0, A-B\} \\
& b_{n+1,2}=0 \\
& \ldots \ldots \ldots \ldots \\
& b_{n+1, m}=0
\end{aligned}
$$

Isto tako se uradi pomoću fiksnog ishodišta za slučaj $A<B$:

$$
\begin{aligned}
& a_{n+1,1}=\max \{0, B-A\} \\
& a_{n+1,2}=0 \\
& \ldots \ldots \ldots \ldots \ldots \\
& a_{n+1, m}=0
\end{aligned}
$$

Taj zapis omogućuje da se promatraju oba slučaja zajedno, jer je najmanje jedan od brojeva $b_{n+1,1}$ ili $a_{n+1,0}$ jednak nuli.

Ograničenje $A=B$ sada postaje

$$
\sum_{i=1}^{n+1} \sum_{r=0}^{m} a_{i r}=\sum_{j=1}^{n+1} \sum_{s=1}^{m} b_{j s}
$$

to jest, dobiven je transportni problem $s(m+1)(n+1)$ ishodišta i $m(n+1)$ odredišta.

Moguća rješenja $x_{\text {injs }}$ tako modificiranoga transportnog problema zadovoljavaju sljedeće uvjete:

$$
\begin{align*}
& \sum_{i=1}^{n+1} \sum_{r=0}^{m} x_{i r j s}=b_{j s} ;-j=1,2, \ldots, n+1 ; s=1,2, \ldots, m \tag{5.8}\\
& \sum_{j=1}^{n+1} \sum_{s=1}^{m} x_{i r j s}=a_{i r} ; \quad i=1,2, \ldots, n+1 ; \\
& x_{i j r s}>0 \quad i=1,2, \ldots, n+1 ; \quad j=1,2, \ldots, n+1 \\
& r=0,1,2, \ldots, m ; \quad s=1,2, \ldots, m
\end{align*}
$$

Među mogućim rješenjima biraju se ona koja imaju realan smisao. Realna rješenja zadovoljavaju vremenska ograničenja. Prije svega, da bi se isključile dostave vagona koje ne bi zadovoljile vremenska ograničenja, stavit će se da su te vrijednosti $X_{i p s}$ jednake nuli. Velicine $X_{\text {irs }}$ koji ne zadovoljavaju vremensko ogranicenje odnose se na one dostave praznih vagona koje ne mogu biti dostavlieni na vrijeme kolodvorima koji ih potražuju, to jest, to su dostave iz i-tog ishodišta koje su poslate r-tog dana da bi u j-to odredište stigle s-tog dana i pri tom zadovoljavaju uvjet:

$$
r+t_{i j}>s
$$

Ako, pak dostava zadovoljava uvjet:

$$
\begin{equation*}
r+t_{i j} \leq s \tag{5.9}
\end{equation*}
$$

tada je odgovarajuće rješenje $x_{i j s}>0$ realno, što znači da će dostava iz i -tog ishodišta stići u j-to odredište ne kasnije od dana kada je potrebno. Znači, moguća rješenja transportnog problema, pored ograničenja (5.8) u ovoj modifikaciji, zadovoljavaju i vremensko ograničenje (5.9). Takva rješenja nazivaju se realnima.

Sada je model sveden na klasičan model transportnog problema, ako se samo vrijednostima $x_{i r s}$, koje ne zadovoljavaju uvjet (5.9) pridruže veliki transportni troškovi $M_{\text {irjs }}$ [1]. Znaci, transportni troškovi $c_{\text {injs }}$ prebacivanja praznih vagona iz itog u j-ti kolodvor definiraju se na sljedeći način:

Očigledno je $c_{i, n+1,1}=0(i=1,2, \ldots, n+1 ; r=1,2, \ldots, m)$ jer veličine $c_{i, n+n+1}$ označavaju troškove prijevoza praznih vagona kojih ima previše u i-tom kolodvoru r-tog dana i koje treba poslati na fiktivni kolodvor $(n+1)$ prvog dana i $c_{n+1.0 \text { s }}=0(j=1,2, \ldots, n+1 ; s=1,2, \ldots, m)$ jer veličine $c_{n+1,0 \text { js }}$ označavaju troškove prijevoza praznih vagona koje treba poslati iz fiktivnoga kolodvora uoči početka realizacije plana da bi u j-ti stigli s-tog dana.

Valja napomenuti na kraju da se ovaj matematički model može prilagoditi složenijim pretpostavkama od pretpostavki 1-4 na kojima je model konstruiran.

Jedno od bitnih ograničenja je, svakako, prvo, to jest ograničenje da su vagoni istog tipa. Model se može prosiriti da se uvedu alternacije za pojedine tipove praznih vagona. Ipak se model usiožnjava odbacujući prvo ograničenje.

Od posebnog je praktičnog značenja da se u ovom matematičkom modelu może uzeti u obzir činjenica da kolodvori ne jednōm, nego više puta tijekom dana šalju izvješće centru o broju potrebnih praznih vagona, odnosno o broju praznih vagona koje ti kolodvori mogu poslati drugim kolodvorima. Isto tako, model može uzeti u obzir da se prazni vagoni iz jednog kolodvora mogu prebaciti u drugi i tamo koristiti još istog dana, to jest, može biti $r=s$, odnosno velicine $t_{i j}(i=1,2, \ldots, n ; j=1,2, \ldots, n)$ mogu biti proizvoljni brojevi između 0 i m , a ne samo cijeli brojevi u tim granicama.

U ovom matematičkom modelu također nije uzet u obzir prioritet robe koju treba prevoziti. Klasifikacija robe prema prioritetu i naznačavanje i ovih podataka operativnom centru zahtijeva također prosirenje matematičkog modela transportnog problema. Takvo proširenje još više će približiti matematički model realnosti.

5.4.5 Minimizacija vremena transporta

Koeficijenti $c_{i j} u$ funkciji cilja $F=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}$ do sada su označavali ili jedinične troškove transporta iz ishodišta $\boldsymbol{I}_{\boldsymbol{I}}$ do odredišta O_{j} ili udaljenost od ishodišta do odredišta. Pod optimalnim planom transporta razumijeva se takav plan po kojemu su ukupni troškovi transporta minimalni, ili prema kojemu je ukupni transportni rad minimalan.

Pri prijevozu lako pokvarljive robe nameću se drugi kriteriji optimizacije, jer najvažnije je izvršiti prijevoz u najkraćem vremenu. Naravno, optimalni plan u odnosu na troškove transporta ne mora biti optimalan i u odnosu na vrijeme prijevoza.

Pretpostavimo da koeficijenti $c_{i j}$ označavaju vrijeme izraženo u nekim vremenskim jedinicama (satima, danima) za koje se teret transportira od ishodišta I, do odrediśta O. U modelu cee se prihvatiti pretpostavka da vrijeme transporta od nekog ishodišta do odredišta ne ovisi o veližini dostave.

Ako se u transportnom problemu postavlja zahtjev da se minimizira zbroj $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}$, koji označava ukupni broj tona-sati ili vagona-sati, onda se takav transportni problem naziva transportni problem minimizacije vremena prve vrste. Određivanje optimalnog transporta u tom slučaju ni po čemu se ne razlikuje od nalaženja optimalnog plana kod klasičnoga transportnog problema.

Pri prevożenju lako pokvarljive robe, npr. jagoda, nastoji se minimizirati vrijeme da se sve dostave obave. Takvi transportni problemi s minimiziranim
vremenom svih dostava nazivaju se transportnim problemima minimizacije vremena druge vrste. Matematički model transportnog problema minimizacije vremena transporta druge vrste glasi:

Naći skup dostava x_{i}, koji osigurava

$$
\begin{equation*}
\max _{x_{i j}>0,}\left\{c_{i j}\right\} \rightarrow \min \tag{5.37}
\end{equation*}
$$

gdje se minimum traži po svim bazičnim rješenjima, uz ograničenja

$$
\begin{align*}
& \sum_{j=1}^{n} x_{i j}=a_{i j}, \quad i=1,2, \ldots, m \tag{5.38}\\
& \sum_{i=1}^{m} x_{i j}=b_{j}, \quad j=1,2, \ldots, n \tag{5.39}\\
& x_{i j} \geq 0, \quad i=1,2, \ldots, m ; j=1,2, \ldots, n \tag{5.40}\\
& \sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j} \tag{5.41}
\end{align*}
$$

Kao što se vidi, funkcija cilija (5.37) nije linearna funkcija varijabli $x_{i j}$, pa ovaj problem nije problem linearnog programiranja i ne može se rješavati izloženim metodama.

Prema ideji I.V. Romanovskog [8] uočava se najprije da je osnovni cill pri rješavanju takvih problema umanjiti maksimaino vijeme transporta dostave prema bazičnom planu. Zbog toga se ispituje mogućnost smanjenja vrijednosti

$$
t_{\text {max }}=\max _{\mathrm{t}_{\mathrm{ij}}}
$$

gdje je

$$
t_{i j}=\left\{\begin{array}{cc}
c_{i j} & \text { za } x_{i i}>0 \\
0, & \text { za } x_{i j}=0
\end{array}\right.
$$

Ako se uspije naći ono bazično rješenje za koje je $t_{\text {max }}$ najmanji među svim $t_{\text {max }}$ koji odgovaraju bazičnim rješenjima $X=\left\{x_{i}\right\}$ tada će takvo rješenje biti optimalno rješenje transportnog problema minimizacije vremena druge vrste. Simbolično, u ovom problemu se traži takav plan transporta gdje je vrijeme zadnje dostave minimalno i jednako:

$$
\min \max _{\mathrm{t}}
$$

$$
X_{k} \in\{X\} \quad x_{i j}^{k} \in X_{k}
$$

Postupak nalaženja optimalnog jiešenja sastoji se u tome da se dani problem zamijeni odgovarajućim transportnim problemom minimizacije vremena prve vrste i time omogući korištenje metoda nalaženja optimalnog rješenja kod klasičnog transportnog problema. Praktično, navedeni postupak svodi se na sljedeće korake:

1. Za dani transportni problem naći početno bazično rješenje.
2. Odreditit $\mathrm{t}_{\text {max }} u$ početnom bazičnom rješenju.
3. Veličine $c_{i j}$ zamijeniti veličinama $h_{i_{i}}$, koje se određuju formulama:

$$
h_{i i}=\left\{\begin{array}{lll}
0 & \text { za } & c_{\bar{W}}<t_{\text {max }} \tag{5.42}\\
1 & z a & c_{i j}=t_{\text {max }} \\
M & \text { za } & c_{i j}>t_{\text {max }}
\end{array}\right.
$$

gdje je M dovolijno velik pozitivni broj.
Uvođenjem veličina $h_{i j}$ sve prometnice mogu se podijelitit u tri skupine. Proj skupini prometnica pripadaju prometnice s vremenom prijevoza koje je manje od maksimalnog, to jest za koje je $h_{i j}=0$. Te su prometnice pogodne za transport. Drugoj skupini prometnica pripadaju prometnice s vremenom transporta koje je jednako maksimalnom vremenu transporta (u danom bazičnom planu), to jest za koje je $h_{\text {if }}=1$. Treću skupinu prometnica čine prometnice kod kojih je vrijeme transporta veće od maksimalnog vremena transporta, to jest za koje je $h_{i j}=M$. Prometnice treće skupine su nedopustive (nepoželine) u novom bazičnom planu, pri traženju prometnica po kojima se izvodi dostava u kraćem vremenu.
4. Na kraju se odrede karakteristike nebazičnih polja (gdje je $x_{i j}=0$). Ako su sve karakteristike nenegativne, onda je dobiveno bazično rješenje i optimalno, pri čemu se $t_{\text {max }}$ maksimalno vrijeme transporta prema dobivenom planu transporta može umanjiti.
Ako je makar jedna od tih karakteristika negativna, tada se traži novo bazično rješenje. Za njega se računaju karakteristike nebaziënih polja i postupak ponavlja dok se ne dođe do optimalnog ješenja.
Postupak će se pokazati na numeričkom primjeru.

Primjer 1.

Dan je zatvoreni transportni problem gdje treba minimizirati vrijeme svih dostava.

Tablica 5.46

	O_{1}			O_{3}		O_{4}		O_{5}	50
1	15	20		25	15		15		
I_{2}	10 (25)		(35)	20	40		30		100
I_{3}	12	18				(85)		(6)	150
	75			45		85		60	

Naći optimalni plan s minimalnim vremenom transporta.
U tablici 5.46 je označeno početno bazično rješenje dobiveno dijagonalnom metodom za koje je

$$
\max _{x_{\mathrm{f}} \in x_{1}} t_{i j}=t_{35}=36, \quad x_{1}-\text { prvo bazično rješenje }
$$

Napravi se transformacija prema (5.42) i pomoću koeficijenata redaka i stupaca računaju karakteristike nebazičnih polja.

Tablica 5.47

Polja (1,5) i $(2,5)$ imaju negativne karakteristike; plan nije optimalan. Polje $(1,5)$ ima manje vrijeme $t_{\mathrm{t}}, \mathrm{t}_{15}<\mathrm{t}_{25}$, te se želi da polje $(1,5)$ bude baziěno. Po lancu $(1,5)$ - $(1,1)$ - $(2,1)$ - $(2,3)$ - $(3,3)$ - $(3,5)$ treba unijeti promjenu za $\delta=\min \{50,40,60\}=40$. Novo baziéno rješenje prikazano je u tablici 5.48.

Tablica 5.48

Karakteristike nebazičnih poja $(3,1)$ i $(3,2)$ su negativne; plan u tablici 5.48 nije optimalan. Na lancu $(3,1)-(3,5)-(1,5)-(1,1)$ treba unijeti promjene $\delta=\min \{20,10\}=10$. Novi plan prikazan je u tablici 5.49.

Tablica 5.49

Plan u tablici 5.49 nije optimalan jer je karakteristika nebazičnog polja (2,5) negativna. Nastavlja se postupak traženja optimalnog rješenja. Plan u tablici 5.50 je optimalan jer su sve karakteristike nebazičnih polja nenegativne.

Tablica 5.50

Promatraju se vremena $t_{i j}$ iz tablice 5.46 za bazična polja tablice 5.50 i dobije se

$$
t_{\max }=\max \{15,10,25,30,12,24,30\}=30
$$

Sve dostave bit će obavljene za 30 vremenskih jedinica (i to se vrijeme ne može smanjiti).

I jednostavno prebacivanje dostava po lancima polja transportne tablice s ciljem isključivanja polja u kojima je vrijeme prevoženja jednako maksimainom vremenu u dobivenom planu predstavlja pogodnu metodu rješavanja transportnog problema s kriterijem minimalnog vremena svih dostava. Na taj način može se riješiti primjer 1. Prema tablici 4.46 za početno bazično rješenje $\max t_{i j}=t_{35}=36$.
$x_{i n} \in X_{1}$
Dakle, traži se novi plan da polje $(3,5)$ ne bude bazično. U lancu $(3,5)$ -$(2,5)-(2,3)-(3,3)$ mogu se obaviti promjene tako da se u poljima $(3,5)$ i $(2,3)$ oduzme $\delta=\min \{60,40\}=40$, a ista veličina doda na polja $(2,5) i(3,3)$. Novi plan prikazan je u tablici 5.51 .

Tablica 5.51

I dalje je polje $(3,5)$ bazično. U lancu $(3,2)-(3,5)-(2,5)-(2,2)$ mogu se načiniti izmjene za $\delta=\min \{20,35\}=20$. Novi transportni plan je prikazan u tablici 5.52.

Tablica 5.52

Novi transportni plan ima

$$
t_{\max }=t_{25}=t_{34}=30
$$

Može se nać i drugi raspored dostava, ali $t_{\text {max }}$ neće biti manje od $t_{25}=t_{34}=\mathbf{3 0}$.
(Ova stranica je ostavljena prazna)

5 Problemi transporta i distribucije

5.1 Formulacija transportnog problema

Zadatak. Riješite grafičkom metodom problem prijevoza kave iz dvije pržionice P_{1} i P_{2} u diskonte D_{1}, D_{2} i D_{3}, ako su troškovi, ponuda i potražnja kao u tablici:

	D_{1}	D_{2}	D_{3}	a_{i}
P_{1}	3	7	4	40
P_{2}	3	5	9	56
b_{j}	22	38	36	

(rješenje: $T=400$)
Rješavanje transportnog problema može se razdijeliti u tri etape:

- određivanje početnog bazičnog rješenja
- ocjena optimalnosti dobivenog rješenja
- promjena plana

Metode određivanja početnog bazičnog mogućeg rješenja su:

- dijagonalna metoda ili metoda sjeverozapadnog kornera
- metoda najmanje cijene
- VAM - metoda ili Vogelova metoda

Metode ocjenjivanja optimalnosti rješenja transportnog problema su:

- Stepping-stone metoda
- MODI ili modificirana Stepping-stone metoda

Promjena plana koji nije optimalan, provodi se jedino Stepping - stone metodom.

5.2 Zadaci

1. Odredite plan transporta tako da ukupni troškovi budu minimalni. Ponuda, potražnja i jedinični troškovi dani su u tablici:

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	a_{i}
I_{1}	5	7	8	3	1	300
I_{2}	2	4	9	5	9	600
I_{3}	9	11	4	7	9	400
I_{4}	6	7	9	9	11	700
b_{j}	150	350	350	500	650	

(rješenje: $T=9650$)
2. Zrno pšenice sa četiri lokacije treba transportirati u tri silosa. Na prvoj lokaciji ubrano je $400 t$, na drugoj $500 t$, na trećoj $800 t$ i na četvrtoj $500 t$ pšeničnog zrna. Kapaciteti silosa su: $700 t$ prvog, $800 t$ drugog i $700 t$ trećeg. Odredite minimalne troškove transporta pšeničnog zrna ako su tablicom dani troškovi transporta jedne tone zrna s i-te lokacije u j-ti silos.

	S_{1}	S_{2}	S_{3}
L_{1}	1	4	3
L_{2}	7	1	5
L_{3}	4	8	3
L_{4}	4	2	8
(rjesenje:	$=4200$)		

3. Transportni je problem zadan tablično:

	O_{1}	O_{2}	O_{3}	O_{4}	a_{i}
I_{1}	3	15	6	4	90
I_{2}	1	8	10	5	75
I_{3}	4	3	6	10	35
b_{j}	50	50	85	15	

Zadan je plan:

$$
x_{11}=25, x_{13}=50, x_{14}=15, x_{21}=25, x_{22}=50, x_{33}=35
$$

Poboljšavajte zadani plan do optimalnog Steping-stone metodom. Odredite plan transporta sa minimalnim troškom i izračunajte trošak (rješenje: $T=855$)
4. Nadjite optimalni plan i izračunajte minimalni trošak

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	
S_{1}	6	12	14	8	11	95
S_{2}	10	12	10	3	15	55
S_{3}	12	15	7	14	4	80
	35	50	40	70	35	

(rješenje: $T=1530$)

5.3 Degeneracija

Početno bazično moguće rješenje je degenerirano radi postojanja zatvorenog potproblema. Ako je kod konstrukcije početnog bazičnog rješenja jednom bazičnom varijablom moguće istovremeno zadovoljiti i ponudu i potražnju, ostaviti jedno, ili ponudu ili potražnju, i to ono kod kojeg su jedinične cijene nepopunjenih polja pojedinačno manje od drugog.

1. Riješiti transportni problem:

	O_{1}	O_{2}	O_{3}	a_{i}
I_{1}	3	1	4	50
I_{2}	5	8	3	40
I_{3}	2	1	6	85
I_{4}	4	5	0	15
b_{j}	90	75	25	

(rješenje: $T=375$)
2. Riješite transportni problem i izračunajte minimalne troškove transporta

	O_{1}	O_{2}	O_{3}	O_{4}	
I_{1}	1	1	6	4	90
I_{2}	1	8	10	5	75
I_{3}	4	3	6	2	35
	50	50	85	15	

(rješenje: $T=725$)
3. Riješite problem transporta, nađite optimalni plan i izračunajte minimalni trošak toga plana

					a_{i}
	4	3	6	15	90
	2	8	7	3	70
	4	5	1	10	30
b_{j}	50	40	85	15	

(rješenje: $T=630$)
4. Riješite transportni problem:

	O_{1}	O_{2}	O_{3}	a_{i}
I_{1}	10	12	0	$\mathbf{1 0}$
I_{2}	8	4	3	$\mathbf{1 5}$
I_{3}	6	9	4	$\mathbf{1 0}$
I_{4}	7	8	5	5
b_{j}	$\mathbf{2 0}$	$\mathbf{5}$	$\mathbf{1 5}$	

(rješenje: $T=170$)
5. Rijesite transportni problem zadan tablicom:

	O_{1}	O_{2}	O_{3}	O_{4}	a_{i}
I_{1}	8	1	2	9	50
I_{2}	5	7	5	3	50
I_{3}	2	3	9	4	75
b_{j}	40	55	60	20	

(rjesenje: $T=475$)
6. Iz tri rudnika kapaciteta redom 300, 250 i 450 tona iskopanih dnevno, vozi se ugljen u tri prodajna skladišta ogrijeva: S_{1}, S_{2} i S_{3}. Dnevne potrebe tih skladišta su redom 300,400 i 300 tona dnevno. Izračunajte najmanju cijenu prijevoza. Cijene prijevoza po jednoj toni iz prvog rudnika u skladišta redom iznose: 1,3 i 2 novčane jedinice. Cijena po toni za prijevoz iz drugog rudnika u skladišta je 5,7 i 10 , dok iz trećeg redom 3, 1 , i 4 novaca.
(rješenje: $T=2400$)
7. Zadan je transportni problem s četiri ishodišta i tri odredišta. Početno bazično rješenje odredite metodom sjeverozapadnog kuta, a zatim STEPPING STONE metodom odredite optimalno rješanje. Izračunajte minimalne troškove.

	O_{1}	O_{2}	O_{3}	a_{i}
I_{1}	10	12	0	$\mathbf{2 0}$
I_{2}	8	4	3	$\mathbf{3 0}$
I_{3}	6	9	4	$\mathbf{2 0}$
I_{4}	7	8	5	$\mathbf{1 0}$
b_{j}	$\mathbf{4 0}$	$\mathbf{1 0}$	$\mathbf{3 0}$	

(rješenje: $T=340$)
8. Odrediti plan transporta sa minimalnim troškovima i izračunati trošak:

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	
S_{1}	8	18	16	9	10	$\mathbf{9 0}$
S_{2}	10	12	10	3	15	$\mathbf{5 0}$
S_{3}	12	15	7	14	4	$\mathbf{8 0}$
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{4 0}$	$\mathbf{7 0}$	$\mathbf{3 0}$	

(rješenje: $T=1840$)

5.4 Otvoreni problem

Otvoren je problem u kojem je

$$
\sum_{i} a_{i} \neq \sum_{j} b_{j}
$$

Problem zatvaramo dodavanjem retka ili stupca. Jedinične su cijene u dodanom retku ili stupcu jednake nuli. Ukoliko je ponuda veća od potražnje, dodaje se stupac i bazično rješenje u tom stupcu predstavlja količinu koja neće biti distribuirana. U suprotnom, dodaje se redak i bazično rješenje u tom retku predstavlja količinu robe koja neće biti dostavljena.

1. Riješiti transportni problem, izračunati ukupne troškove transporta, a sve za prijevoz robe iz četiri skladišta u tri potrošačka centra

	P_{1}	P_{2}	P_{3}	a_{i}
S_{1}	12	14	2	$\mathbf{3 5}$
S_{2}	10	6	5	$\mathbf{4 5}$
S_{3}	8	11	6	$\mathbf{3 0}$
S_{4}	9	8	7	$\mathbf{2 5}$
	$\mathbf{4 0}$	$\mathbf{4 0}$	$\mathbf{2 0}$	

(rješenje: $T=610$)
2. Riješiti transportni problem:

	P_{1}	P_{2}	P_{3}	ponuda
S_{1}	0	12	10	30
S_{2}	8	4	3	40
S_{3}	6	9	4	25
S_{4}	7	8	5	20
potražnja	35	35	15	

(rješenje: $T=610$)
3. Građevinsko poduzeće ima pet gradilišta i četiri naselja za svoje djelatnike. Kapacitet prvog naselja je 200 radnika, drugog 100, trećeg 150 i četvrtog 50 radnika. Za prvo gradilište potrebno je 150, za drugo isto toliko, za treće 50 , četvrto 60 i za peto 90 radnika. Ako je cijena
prijevoza jednog radnika od i-tog naselja do j-tog gradilišta zadana tablicom, nađite optimalni plan prijevoza radnika i izračunati minimalne troškove prijevoza:

	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}
N_{1}	4	1	2	5	3
N_{2}	2	1	8	3	5
N_{3}	4	8	7	1	2
N_{4}	6	2	5	7	4

(rješenje: $T=940$)
4. Riješite transportni problem i izračunajte minimalni trošak transporta:

	O_{1}	O_{2}	O_{3}	O_{4}	a_{i}
I_{1}	11	21	13	8	1210
I_{2}	4	7	10	13	1100
I_{3}	8	6	11	4	730
b_{j}	95	325	415	800	

(rješenje: $T=10285$)
5. Treba naći optimalni program transporta iz tri ishodišta u četiri odredišta na temelju podataka o jediničnim troškovima, ponudi i potražnji. Izračunati minimalne troškove transporta.

	O_{1}	O_{2}	O_{3}	O_{4}	
I_{1}	2	5	9	6	50
I_{2}	1	7	3	8	60
I_{3}	5	9	4	4	60
	15	40	65	50	

(rješenje: $T=630$)
6. Na skladištima je redom po 60,70 i 55 tona robe mjesečno. Šest robnih kuća mjesečno potražuju redom po $20,40,30,55,15$ i 35 tona robe. Jedinični troškovi prijevoza iz prvog skladišta u svaku od prodavaonica iznose redom: $3,2,2,3,3$ i 1 kunu . Iz drugog skladišta: $2,0,1,1,0$ i 1 kunu . Iz trećeg: 1,4,3,4,2 i 0 kuna. Odredite optimalni plan prijevoza i ukupni trošak. (rješenje: $T=185$).

5.5 Problemski zadaci

1. Na četiri kolodvora ima redom $28,22,36$ i 14 vagona. Šest stanica treba redom: $20,15,17,12,8$ i 28 vagona. Udaljenosti kolodvora i stanica dane su tablicom. Napravite plan prijevoza tako da umnožak broja vagona i kilometara bude najmanji.

	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}
K_{1}	20	27	30	35	40	45
K_{2}	18	35	40	42	50	20
K_{3}	40	30	35	25	48	40
K_{4}	21	45	28	32	40	44

2. Transportni problem zadan je tablicom:

	O_{1}	O_{2}	O_{3}	O_{4}	a_{i}
I_{1}	3	1	0	2	8000
I_{2}	2	3	4	0	7000
I_{3}	7	5	6	3	10000
I_{4}	1	1	0	1	3000
b_{j}	6500	7800	2500	9700	

Odredite minimalne troškove transporta.
3. Nadjite optimalni plan prijevoza i izračunajte minimalni trošak transportnog problema zadanog tablicom u kojoj su navedeni ponuda, potražnja i jedinični troškovi transporta.

	O_{1}	O_{2}	O_{3}	a_{i}	
I_{1}	3	1	5	150	
I_{2}	3	1	2	200	
I_{3}	2	2	1	250	
I_{4}	4	4	6	350	
I_{5}	2	0	3	400	
b_{j}	900	200	400		

Rješenja problemskih zadataka :

1. 2647 vagonskih kilometara
2. $T=45600$ novčanih jedinica
3. $T=2950$ novčanih jedinica.

5.6 Zadaci s ispita

1. Naći optimalni plan transporta iz tri skladišta u četiri odredišta. Jedinični troškovi, kapaciteti skladišta i potražnja odredišta dani su u tablici:

	O_{1}	O_{2}	O_{3}	O_{4}	
I_{1}	3	15	6	4	50
I_{2}	10	8	10	5	75
I_{3}	4	3	6	10	35
	50	50	85	15	

(rješenje: problem zatvoriti dodavanjem retka I_{4} kapaciteta 40 , jediničnih cijena 0 , minimalni $T=900$)
2. Riješite transportni problem prijevoza koji će minimizirati iznos tonskih kilometara, ako su kilometraže izmedju tvornica i opskrbnih centara, kao ponuda tvornica i potražnja centara u tonama dani u tablici:

	C_{1}	C_{2}	C_{3}	Ponuda
T_{1}	25	35	30	160
T_{2}	30	40	40	160
T_{3}	35	55	45	160
T_{4}	15	50	30	240
tražnja	160	280	320	

(rješenje: $T_{\text {min }}=23600$)
3. Transportni je problem zadan tablicom:

	O_{1}	O_{2}	O_{3}	O_{4}	a_{i}
I_{1}	15	15	40	40	80
I_{2}	9	8	10	15	125
I_{3}	23	3	6	42	45
b_{j}	50	60	95	10	

Početno bazično rješenje odredite metodom sjeverozapadnog kornera. Poboljšavajte početni plan do optimalnog MODI metodom. (rješenje: $T_{\text {min }}=2075$).
4. Riješite transportni problem, ako svaki neisporučeni transformator donosi štetu od 10 novčanih jedinica. Količine proizvedenih transformatora potražnja za njima i jedinične cijene transporta dani su tablično:

	C_{1}	C_{2}	C_{3}	C_{4}	a_{i}
P_{1}	3	4	2	0	240
P_{2}	4	3	5	1	280
P_{3}	2	3	2	4	250
b_{j}	180	160	220	180	

(rješenje: $T=1670$, 30 transformatora ostaje u P_{2}).
5. Riješite transportni problem: nadjite optimalni plan transporta i izračunajte minimalni trošak ako se drugom računskom centru treba isporučiti bar 50% traženih računala. Troškovi transporta, količine računala na raspolaganju i potrebe za računalima dani su tablicom:

	R_{1}	R_{2}	R_{3}	R_{4}	a_{i}
I_{1}	2	5	9	6	80
I_{2}	1	7	3	8	120
I_{3}	5	9	4	4	160
b_{j}	100	40	150	110	

(rješenje: nakon fiktivnog retka uvodi se stupac R_{2}^{\prime} u kojem je potražnja 20 , stvarne jedinične cijene podudarne su s cijenama u stupcu R_{2}, dok je fiktivna cijena $M \geq 3 \cdot \max \left(c_{i j}\right)$. Ponuda u stupcu R_{2} mijenja se na 20. Nakon uobičajene procedure, minimalni trošak je 1140.)
6. Rijesite transportni problem, tako da se iz svakog silosa otkupi bar polovica žita. Količina žita u silosima, potražnja otkupnih stanica i cijene po toni žita dani su tablično:

	O_{1}	O_{2}	O_{3}	O_{4}	a_{i}
S_{1}	4	3	4	4	200
S_{2}	4	3	6	2	180
S_{3}	4	2	4	3	150
b_{j}	80	60	120	80	

(rješenje: $T=1080$, treći je silos ispražnjen).

6.4 Minimizacija vremena transporta

Koeficijenti u funkciji cilja sada se interpretiraju kao duljina putovanja. Zahtjev se sastoji u tome da što manja količina robe bude na najduljem putu.

Zadaci

1. Izuzetno opasan plin treba prevesti željeznicom. Proizvodnja plina, potražnja i vremena transporta u satima zadana su tablično:

	O_{1}	O_{2}	O_{3}	O_{4}	proizvodnja
P_{1}	3	15	6	4	55
P_{2}	10	8	10	5	80
P_{3}	4	3	6	10	40
potrebe	55	55	90	20	

(rješenje: Najbolje što se može postići je da $5 t$ putuje iz P_{2} u $O_{3} 10 h$).
2. U Republici Hrvatskoj iznenada je donesen zakon da se kamioni moraju transportirati željeznicom. U Rijeci, Zadru, Šibeniku i Splitu trebamo redom $180,160,90$ i 100 vagona za prijevoz kamiona. Kotoriba, Dobova, Ploče i Vinkovci imaju na raspolaganju redom:120, 160, 80 i 150 vagona. Udaljenosti kolodvora u Rijeci do spomenutih odredišta iznosi redom: $280,170,300$ i 500 km . Udaljenost kolodora u Zadru do spomenutih odredišta su redom: $450,360,280$ i 600 km . Šibenik je udaljen redom do spomenutih odredišta $560,420,180$ i 680 km , dok je iz Splita do odredišta po $600,500,100$ i 780 kilometara. Napravite plan prijevoza po kojem najmanje vagona putuje najvećom kilometražom.
(rješenje: 130 vagona ipak će putovati 600 km od Vinkovaca do Zadra i to će biti vagoni koji će najdalje putovati.)
3. Zadan je transportni problem gdje veličine $c_{i j}=t_{i j}$ označavaju vremena transporta u satima. Nadjite minimalno vrijeme svih dostava, ako one počinju istovremeno:

	O_{1}	O_{2}	O_{3}	O_{4}	a_{i}
I_{1}	6	4	3	5	80
I_{2}	7	4	3	5	70
I_{3}	8	7	4	3	50
b_{j}	60	60	60	20	

(rješenje: 60 jedinica putuje 6 sati i to se ne može popraviti.)
4. Riba se izlovljava u uzgajalištima I_{1}, I_{2}, I_{3}. Svako jutro riba kreće put ribarnica koje se nalaze u mjestima R_{1}, R_{2}, R_{3} i R_{4}. Iz uzgajalis̄ta I_{1} do ribarnica prijevoz traje redom: $2,5,9$ i 6 sati. Da bi iz I_{2} riba došla u spomenute ribarnice treba po $1,7,3$ i 8 sati. Konačno, prijevozi iz I_{3} traju 5,9 , te po 4 sata do ribarnica R_{3} i R_{4}. Treba napraviti takav plan da je što je moguće manje ribe na najduljem putu. Na uzgajalištima je na raspolaganju: $80 t, 120 t, 160 t$ dnevno, a ribarnice potražuju redom: $100 t, 40 t, 150 t$ i $110 t$ dnevno.
(rješenje: $110 t$ ribe putovat će 4^{h}, dok će ostala riba putovati kraće.)

1.4.5. Metoda rasporedivanja

Problem rispoređivanja spada u problem linearnog programiranja, odnosno u probleme transporta. Sastoji se u raspoređivanju n aktivnosti ili resursa na m izvrsilaca ili mesta, pri čemu se želi postici najbolja efikasnost. Polazi se od toga da se jedna aktivnost može dodeliti samo jednom izvrsiocu, kao i da je poznata efikasnost i-tog izvršioca na j-toj aktivnosti ($c_{i j}$). Cilj koji se želi postici može biti: najkraće vreme za izvršenje projekta, najniži ukupni troškovi, najkraci ukupni putevi, najveca dobit, i slično.

Raspored n aktivnosti na mizvršilaca moguce je obaviti na n! nacina (broj permutacija od n elemenata). Ako se rasporeduje 5 aktivnosti na 5 izvrsilaca, onda za to postoji $5!=120$ resenja, dok za raspored 10 aktivnosti na 10 izvrsilaca ima $10!=3628800$ rešenja. Uočljivo je, da razmatranje svih rešenja i iznalaženje najpovoljnijeg, zahteva mnogo vremena. Potrebno vreme se naglo povecava sa porastom broja aktivncsti i izvršilaca. Ovo ukazuje na prednost iznalaženja metode koja ce dovesti do optimalnog rešenja bez razmatranja svih mogućnosti. Ako je i-tom izvršiocu dodeljena j-ta aktivnost, onda se uzima da je $\mathrm{x}_{\mathrm{ij}}=1$, dok je u suprotnom $\mathrm{X}_{\mathrm{ij}}=0$.

Matematicka formulacija problema raspoređivanja može se iskazati na sledeci nacin. Potrebno je odrediti nenegativne vrednosti promenljivih $\mathrm{x}_{\mathrm{ij}}, \mathrm{i}=1,2$, $\ldots, \mathrm{m}, \mathrm{j}=1,2, \ldots, \mathrm{n}, \mathrm{koje}$ daju optimalnu vrednost funkciji

$$
F(X)=\sum_{j=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j},
$$

pri zadovoljenju ograničenja

$$
\begin{aligned}
& \sum_{i=1}^{m} x_{i j}=1, \quad j=1,2, \ldots, n \\
& \sum_{j=1}^{n} x_{i j}=1, \quad i=1,2, \ldots, m
\end{aligned}
$$

Prvo ograničenje ukazuje da jednom izvršiocu može biti dodeljena jedna i samo jedna aktivnost, a drugo da na jednoj aktivnosti može biti angažovan jedan i samo jedan izvrsilac. Otuda, ako je r-tom izvrsiocu poverena s-ta aktivnost, onda je $\mathrm{x}_{\mathrm{rs}}=1$,

$$
\mathrm{x}_{\mathrm{rj}}=0 \mathrm{za} \mathrm{j}=1,2, \ldots, \mathrm{n}, \mathrm{j} \neq \mathrm{s}, \mathrm{i} \mathrm{x}_{\mathrm{is}}=0 \text { za } \mathrm{i}=1,2, \ldots, \mathrm{mi} \mathrm{i} \neq \mathrm{r} \text {. Gornja }
$$ ograničenja su data pod pretpostavkom da je jednak broj aktivnosti i izvršilaca ($\mathrm{n}=\mathrm{m}$).

Pri nepostojanju ravnoteže između izvršilaca i aktivnosti ($m \neq n$) pojavljuje se otvoreni problem raspoređivanja. Za veći broj izvršilaca od broja aktivnosti (m< n), druga grupa ograničenja postaje

$$
\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}} \leqslant 1, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m}
$$

dok za veći broj aktivnosti od broja izvršilaca, prva grupa ograničenja postaje

$$
\sum_{i=1}^{m} x_{i j} \leqslant 1, \quad j=1,2, \ldots, n
$$

Da bi se ovi matematički modeli sve'i na matematički model uravnoteženja izvrsilaca i aktivnosti, uvodi se fiktivna aktivnost, odnosto fiktivni izvršilac. Pri Cemu su efikasnosti fiktivne aktivnosti $\mathrm{c}_{\text {if }}=0(\mathrm{i}=1,2, \ldots, \mathrm{~m})$, odnosno fiktivnog izvrsioca $c_{f j}=0(j=1,2, \ldots, n)$. Ovde indeks f označava da se radi o fiktivnoj aktivnosti, odnosno fiktivnom izvršiocu.

50. Zadatak

Pet radnika treba da obave pet poslova. Svaki radnik je osposobljen za izvršenje svih poslova, ali u razmatranom periodu jedan radnik možr: biti angažovan samo na jednom poslu. Vremena obavljanj̣a posiova od strane radnika u norma časovima data su u tabeli 1 .
lzvršiti raspodelu poslova na radnike da bi ukupno vreme izvršenja poslova bilo minimalno.

Rešenje. Matematički model ovoga prubleina se sastoji u odredivanju

$$
\min F(X)=\sum_{i=1}^{5} \sum_{j=1}^{5} c_{i j} x_{i j}
$$

$$
\begin{aligned}
\sum_{i=1}^{5} \mathrm{x}_{\mathrm{ij}} & =1, \quad \mathrm{j}=1,2,3,4,5 \\
\sum_{\mathrm{j}=1}^{5} \mathrm{x}_{\mathrm{ij}} & =1, \quad \mathrm{i}=1,2,3,4,5
\end{aligned} \quad \begin{aligned}
& 1, \text { ako je i-tom radniku dodeljen } \mathrm{j} \text {-ti posao } \\
& 0, \text { ako i-tom radniku nije dodeljen j-ti posao. }
\end{aligned}
$$

Tabela 1.

POSLOVI					
RADNICI	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
R_{1}	3	21	12	6	10
\mathbf{R}_{2}	8	23	2	5	5
\mathbf{R}_{3}	33	14	13	10	7
\mathbf{R}_{4}	14	21	19	11	11
\mathbf{R}_{5}	9	16	10	15	13

Za probleme kao što je ovaj (jednak broj radnika i poslova) kaže se da imaju kvadratnu matricu efikasnosti C.

Algoritam iznalaženja optimalnog rešenja bazira na matrici efikasnosti C, jer promenljive mogu imati vrednost 1 ili 0 . Algoritam se sastoji iz vise korak::.

1. Od svih elemenata kolone oduzima se najmanji elemenat kolone.
2. Ustanovljava se da li postoji u svakom redu bar jedna nula. Ako to nije slučaj, od svih elemenata redova bez nule oduzima se najmanji elemenat toga reda.
3. Razvrstavaju se nule na nezavisne i zavisne. Pocinje se od reda koji ima samo jednu nulu. Ta nula se uvrštava u nezavisne. Sve nule koje se nalaze u koloni sa ovom nulom uvrštavaju se u zavisne. Po završetku redova sa jednom nulom prelazi se na redove sa više nula. Pri tome se proizvoljno proglašava neka od nula nezavisnom.
4. - Ispituje se optimalnost rešenja. Ako ima nezavisnih nula koliko i aktivnosti, odnosno izvrsilaca, onda je iznađeno optimalno rešenje. Ukoliko je manji broj nezavisnih nula postupak se produz̃ava kao što sledi:
a) označiti redove \&a nezavisnim nulama (*);
b) označiti (precrtati) sve kolone koje imaju zavisne nule u označenim redovima;
c) označiti redove (*) koji imaju nezavisnu nula u označenim kolonama;
d) označiti (precrtati) kolone koje imaju zavisnu nulu u novo označenom redu;

- postupci pod c) id) se uzajamno smenjuju dok se ne dođe do označenih redova bez zavisne nule ili precrtanih kolona bez nezavisne nule;
e) posebno označiti (precrtati) sve redove koji nisu označeni po postupcima pod a) ic);
- ovo omogućuje da se najmanjim brojem linija precrtaju sve nezavisne nule, tj. broj linija je jednak broju nezavisnih nula;
f) pronaći najmanji neprecrtani elemenat;
g) vrednost najmanjeg elementa, utvrđenog pod f), dodati elementima koji se nalaze na preseku precrtanih kolona i redova;
h) vrednost najmanjeg elementa oduzeti od svih neprecrtanih elemenata;
i) svi ostali precrtani elementi se ne menjaju;
j) u novodobijenoj matrici izvršiti razvrstavanje nula na nezavisne i zavisne.

Primenu ovoga algoritma ilustrovaćemo našim primerom.

Tabela 2.

POSLOVI					
RADNICI	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}
R_{1}	0	7	10	1	5
R_{2}	5	9	0	0	0
R_{3}	30	0	11	5	2
\mathbf{R}_{4}	11	$?$	17	6	6
\mathbf{R}_{5}	6	2	8	10	8

1) Od svih elemenata kolone (tabela 1) oduzet je najmanji elemenat te kolone i dobijena je nova matrica (tabela 2).
2) Kako u četvrtom i petom redıs ne postoji nula, to najmanje elemente ovih redova oduzimame od ostalih. Tako smo dobili matricu datu tabelom 3.

Tabela 3.

	P_{1}	P_{5}	P_{3}	P_{4}	P_{5}
R_{1}	Q	,	10	$\underline{1}$	S-
$-_{2}$	5	0	-四	-	-
$\mathrm{R}_{3}{ }^{*}$	30	\$	11	5	2
$\rightarrow R_{4}$	5	-	11	0	-
- $\mathrm{R}_{5}{ }^{*}$	4	+	6	8	6

3) U tabeli 3 razvrstali smo nule na zavisne i nezavisne. Posli smo od prvog reda i proglasili njegovu nulu u prvoj koloni za nezavisnu (uokvirena), jer je to jedina nula u ovom redu. Treci i peti red imaju po jednu nulu ali u istoj - drugoj koloni, pa smo uzeli da je nula u trecem redu nezavisna. To je uslovilo da nulu u petom redu svrstamo u zavisne (precrtana). Drugi i cetvrti red imaju vise nula, pa smo odabrali da u drugom redu i trećoj koloni, odnosno u četvrtom redu i cetvrtoj koloni bude nezavisna nula.
4) Ustanovili smo da rešenje nije optimalno, jer ima 4 nezavisne nule, a matrica je dimenzije 5×5.
a) Označili smo red bez nezavisne nule $\left(\mathrm{R}_{5}\right)$.
b) Precrtali smo kolonu sa zavisnom nulom u označenom redu (P_{2}).
c) Oznacili smo red $\left(\mathrm{R}_{\mathbf{3}}\right)$ sa nezavisnom nulom u precrtanoj koloni.
d) Ne postoji kolona sa zavisnom nulom u trecem redu, te je zavrseno obeležavanje redova i precrtavanje kolona.
e) Precrali smo neobeležene redove $\left(\mathbf{R}_{1}, \mathrm{R}_{\mathbf{2}} \mathrm{i} \mathrm{R}_{\mathbf{4}}\right)$. Broj linija je jednak broju nezavisnih nula - cetiri.
f) Najmanji neprecrtani elemenat je 2 u polju (3; 5).
g) Dodali smo vrednost ovog elementa vrednostima svih dvostruko precrtanih elemenata.
h) Oduzeli smo vrednost ovog elementa od svih neprecrtanih elemenata. Tako smo dobili matricu datu tabelom 4.
j) Pošto u prvom redu postoji jedna nula, uzeli smo je za nezavisnu. Takođe u petom redu postoji jedna nula i svrstali smo je u nezavisne. To je uslovilo da se nula u polju $(3 ; 2)$ proglasi zavisnom. Potom smo morali nulu u polju $(3 ; 5)$ uzeti za nezavisnu, a nule u istoj koloni za zavisne. Dalje je bilo uslovljeno da uzmeno
nulu u polju $(4 ; 4)$ za nezavisnu, odnosno u polju $(2 ; 1)$ za zavisnu iu polju $(2 ; 3)$ za nezavisnu.

Tabela 4.

| POSLOVI |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RADNICI | P_{1}

Pošto smo dobili pet nezavisnih nula, dobijeno rešenje je optimalno. Znači, u optimalnom rešenju su:

$$
x_{11}=1, \quad x_{23}=1, \quad x_{35}=1, \quad x_{44}=1 \quad i \quad x_{52}=1,
$$

a sve ostale promenljive imaju vrednost nula. Optimalna vrednost funkcije kriterijuma iznosi

$$
\begin{aligned}
\min F(X) & =c_{11} x_{11}+c_{23} x_{23}+c_{35} x_{35}+c_{44} x_{44}+c_{52} x_{52}= \\
& =c_{11}+c_{23}+c_{35}+c_{44}+c_{52}=3+2+7+11+16 \\
& =39 \text { norma Casova. }
\end{aligned}
$$

Konstatujemo, najbolja efikasnost se postiže (najkraće ukupno vreme izvršenia zadatka) ako se prvom radniku poveri prvi posao, drugom radniku treći posao, trećem radniku peti posao, četvrtom radniku četvrti posao i petom radniku drugi posao. Najkraće vreme za koje ovi radnici mogu obaviti ove poslove je 39 norma časova.

51. Zadatak

Radna organizacija je nabavila 4 mašine, specijalizovane za proizvodnju pojedinog sastavnog dela slożenog proizvoda. Potrebno je zaposliti 4 radnika na ove masine, s obzirom da jedan raduik može raditi istovremeno samo na jednoj
mašini. Konkursna komisija radne organizacije je odlučila da osnovni kriterijum za izbor radnika bude škart na proizvodima. Svaki radnik je proizveo isti broj proizvoda na svakoj mašini. Pri tome je bio procenat škarta na proizvodima kao sto je dato u tabeli 1 . Kako rasporediti radnike na mašine da bi ukupni procenat škarta na proizvodima bio najmanji?

Tabela 1.

MAŠINE				
RADNICl	M_{1}	M_{2}	M_{3}	M_{4}
R_{1}	3	6	7	8
R_{2}	2	3	1	4
R_{3}	4	10	6	9
R_{4}	1	9	4	8

Rešenje. Matematički model ovoga problema se sastoji u određivanju

$$
\min F(X)=\sum_{i=1}^{4} \sum_{j=1}^{4} c_{i j} x_{i j}
$$

pri ograničenjima

$$
\begin{aligned}
\sum_{i=1}^{4} x_{i j} & =1, \quad j=1,2,3,4 \\
\sum_{\mathrm{j}=1}^{4} \mathrm{x}_{\mathrm{ij}} & =1, \quad \mathrm{i}=1,2,3,4 \\
\mathrm{x}_{\mathrm{ij}} & =\left\{\begin{array}{l}
1, \text { ako i-ti radnik radi na } \mathrm{j} \text {-toj mašini } \\
0, \text { ako i-ti radnik ne radi na } j \text {-toj mašini }
\end{array}\right.
\end{aligned}
$$

Primena algoritma metode raspoređivanja.
c) Označen je red sa nezavisnom nulom u precrtanoj koloni $\left(K_{1}\right)$.
d) Ne postoji kolona sa zavisnom nulom u prvom redu, te je završeno

Tabela 2.

MASINE				
RADNICI				

2. U prvom i trecem redu nema nule, pa se najmanji elemenat ovih redova oduzima od ostalih elemenata. Tako se dobija tabela 3.
3. U tabeli 3 razvrstane su nule na nezavisne i zavisne.

Tabela 3.

	$\begin{array}{r} 1 \\ 1 \\ 1 \\ M_{1} \\ 1 \\ 1 \end{array}$	M_{2}	M_{3}	M_{4}
R, ${ }^{*}$	$\left[\begin{array}{c}1 \\ 0 \\ \hline\end{array}\right.$	1	4	2
$-\mathrm{R}_{2}$	-1--	[0]	- - -	- 8 -
$\mathrm{R}_{3}{ }^{*}$	-	t	2	2
$\mathrm{R}_{4}{ }^{*}$	苑	6	3	t

4. Rešenje nije optimalno, jer postoje samo dve nezavisne nule.
a) Označeni su redovi bez nezavisnih nula ($\mathrm{R}_{\mathbf{3}}$ i R_{4}).
b) Precrtana je kolona sa zavisnom nulom u označenom redu (M_{1}).
c) Označen je red sa nezavisnom nulom u precrtanoj koloni $\left(R_{1}\right)$.
d) Ne postoji kolona sa zavisnom nulom u prvom redu, te je završeno obeležavanje redova i precrtavanje kolona.
e) Precrtani su neobeleženi redovi $\left(\mathbf{R}_{\mathbf{2}}\right)$.
f) Najmanji neprecrtani elemenat je 1 u polju (1; 2).
g) Dodat je najmanji elemenat dvostruko precrtanom elementu.
h) Oduzet je ovaj elemenat od svih neprecrtanih elemenata
i) Prepisivanjem jednostruko precrtanih elemenata dolazi se do tabele 4.

Tabela 4.

	$\begin{array}{r} 1 \\ 1 \\ M_{1}^{1} \\ \vdots \\ 1 \\ \hline \end{array}$	M_{2}	M_{3}	M_{4}
$\mathrm{R}_{\mathrm{T}}{ }^{---}$	$-\frac{1}{8-}$	-0	-3--	-1-
$-\mathrm{R}_{2}$	-2--	- - -	0	$-8-$
$\mathrm{R}_{3}{ }^{*}$	0	5	3	3
$\mathrm{R}_{4}{ }^{*}$	$\stackrel{1}{0}$	7	4	5

j) Izvršeno je razvrstavanje nula u tabeli 4.

Dobijeno rešenje nije optimalno, jer postoje samo tri nezavisne nule, pa se postupak ponavlja od a) do j).

Tabela 5.

MAŠINE				
RADNICI		M_{1}	M_{2}	M_{3}
\mathbf{R}_{1}	3	M_{4}		
\mathbf{R}_{2}	5	\varnothing	3	1
R_{3}	\mathscr{O}	2	\varnothing	$\boxed{0}$
R_{4}	0	4	1	2

Rešenje dato tabelom 5 je optimalno rešenje. Pri razvrstavanju nula proizvoljno smo uzeli da su nezavisne nule u drugom redu i trećoj koloni i u trećem redu i cetvrtoj koloni. Mogli smo uzeti za nezavisne nule u drugom redu i četvrtoj koloni i trećem redu i trećoj koloni.

Ovo ukazuje da su optimalna rešenja:
prvo

$$
x_{12}=1, \quad x_{23}=1, \quad x_{34}=1, \quad x_{41}=1, i
$$

drugo

$$
x_{12}=1, \quad x_{24}=1, \quad x_{33}=1, \quad x_{41}=1
$$

Minimalna vrednost funkcije kriterijuma je

$$
\min F(X)=c_{12}+c_{23}+c_{34}+c_{41}=6+1+9+1=17,
$$

odnosno

$$
\min F(X)=c_{12}+c_{24}+c_{33}+c_{41}=6+4+6+1=17 .
$$

Najbolje je rasporediti prvog radnika na drugu mašinu, drugog radnika na treću (ili četvrtu), trećeg radnika na Cetvrtu (ili treću) i četvrtog na prvu. Tada ce skart na drugom proizvodu iznositi 6 procenata, na trecem 1 (ili 6) procenat, na Četvrtom 9 (ili 4) procenata i na četvrtom 1 procenat. Proseट̌an కkart na svim delovima ce iznositi $17: 4=4,25$ procenata.

52. Zadatak

U mašinskom odeljenju radne organizacije potrebno je obaviti cetiri posla. Ovi poslovi se mogu obaviljati na šest mašina. Na svakoj mašini može se raditi svaki posao, ali istovremeno samo jedan. Na ovim poslovima treba angažovati četiri mašine a dve izdvojiti za druge poslove. Vreme za obradu poslova na mašinama (u norma časovima) dato je u tabeli 1.

Kako rasporediti poslove na mašine, pa da utrošeno vreme za obavljanje svih poslova bude što manje?

Rešenje. Matematički model ovoga problema ima sledeći oblik

$$
\min F(X)=\sum_{i=1}^{6} \sum_{j=1}^{4} c_{i j} x_{i j}
$$

uz zadovoljenje ograničenja

$$
\begin{aligned}
\sum_{i=1}^{6} x_{i j} & =1, \quad j=1,2,3,4, i \\
\sum_{j=1}^{4} x_{i j} & \leqslant 1, \quad i=1,2, \ldots, 6, \\
x_{i j} & =\left\{\begin{array}{l}
1, \text { ako } j e \text { j-ti posao dodeljen i-toj masini } \\
0, u \text { suprotnom. }
\end{array}\right.
\end{aligned}
$$

Tabela 1.

POSLOVI				
MASINE	P_{1}	P_{2}	P_{3}	P_{4}
M_{1}	9	12	7	12
M_{2}	14	10	9	11
M_{3}	8	15	11	15
M_{4}	12	13	8	14
M_{5}	10	11	10	10
M_{6}	11	14	12	9

Ovo je otvoreni problem raspoređivanja, te da bi se njegov matematicki model sveo na matematički model zatvorenog problema raspoređivanja potrebno je dodati dva fiktivna posla $\mathrm{P}_{5} \mathrm{i} \mathrm{P}_{6}$, sa vremenom obrade $\mathrm{c}_{\mathrm{i} 5}=\mathrm{c}_{\mathrm{i} 6}=0 \mathrm{i}=1,2$, ..., 6. Za ovakve se probleme kaže da su problemi sa nekvadratnom matricom efikasnosti.

Posle dodavanja dva fiktivna posla dobija se sledeća kvadratna matrica (tabela 2).

Tabela 2.

POSIOVI						
MASINL:	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
M_{1}	9	12	7	12	0	0
M_{2}	14	10	9	11	0	0
M_{3}	8	15	11	15	0	0
M_{4}	12	13	8	14	0	0
M_{5}	10	11	10	10	0	0
M_{6}	11	14	12	9	0	0

1. Najmanji elemenat svake kolone oduzet je od svih ostalih elemenata te kolone i dobijena je tabela 3.

Tabela 3.

| POSIOVI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MASINE |P_{1}

2. U svakom redu postoji bar jedna nula, pa nema potrebe za oduzimanje najmanjeg od ostalih elemenata bilo koga reda.
3. Posle razvrstavanja nula na zavisne i nezavisne dobilo se da ima 6 nezavisn'h nula, sto je dokaz da je iznađeno optimalno rešenje.

Optimalno rešenje je:

$$
x_{13}=1, \quad x_{22}=1, \quad x_{31}=1, \quad x_{45}=1, \quad x_{56}=1, \quad x_{64}=1
$$

Drugim rečima, prvi posao treba obradivati na trećoj mašini, drugi na drugoj, treći na prvoj i četvrti na šestoj. Mašine M_{4} i M_{5} neće biti upotrebljene za obavljanje ovih poslova. Promenljive x_{45} i x_{56} sudopunskepromenljive i one ovde ukazuju koje mašine neće biti angažovane.

Minimalno vreme za koje je moguće obaviti ove poslove iznosi:

$$
\begin{aligned}
\min F(X) & =c_{13} x_{13}+c_{22} x_{22}+c_{31} x_{31}+c_{45} x_{45}+c_{56} x_{56}+c_{64} x_{64}= \\
& =7 \cdot 1+10 \cdot 1+8 \cdot 1+0 \cdot 1+0 \cdot 1+9 \cdot 1=34 \text { norma casova. }
\end{aligned}
$$

53. Zadatak

Radna organizacija treba da otvori četiri nova radna mesta. Raspisan je konkurs. U uži izbor je ušlo pet kandidata. Izvršena je provera njihove stručne sposobnosti za obavljanje poslova. Broj osvojenih poena dat je u tabeli 1.

Tabela 1.

RADNA MISTA RADNICI	M_{1}	M_{2}	M_{3}	M_{4}
R_{1}	5	6	5	1
R_{2}	4	6	4	1
R_{3}	8	6	7	6
R_{4}	2	4	4	4
R_{5}	6	10	9	4

Kako rasporediti radnike na radna mesta, pa da ukupna efikasnost bude najveća? Koji radnik neće biti primljen?

Rešenje. Matematicki model ovog problema je:

$$
\max F(X)=\sum_{i=1}^{5} \sum_{j=1}^{6} c_{i j} x_{i j}
$$

pri ograničenjima

$$
\begin{aligned}
\sum_{i=1}^{5} \mathrm{x}_{\mathrm{ij}} & =1, \quad \mathrm{j}=1,2,3,4, \\
\sum_{\mathrm{j}=1}^{4} \mathrm{x}_{\mathrm{ij}} & \leqslant 1, \quad \mathrm{i}=1,2,3,4,5 \\
\mathrm{x}_{\mathrm{ij}} & =\left\{\begin{array}{l}
1, \text { ako je i-ti radnik određen na j-to mesto } \\
0, \text { u suprotnom. }
\end{array}\right.
\end{aligned}
$$

Karakteristično svojstvo ovoga problema raspoređivanja je iznalaženje maksimalne vrednosti funkcije kriterijuma. Ovaj problem spada takode u otvorene probleme, jer je manji broj radnih mesta nego kandidata. Svođenje ovoga matematickog modela na zatvoreni matematicki model vrsi se dodavanjem fiktivnog radnog mesta (M_{5}), kao što je uradeno u tabeli 2.

Tabela 2.

RADNA MISTA RADNICI					
M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	
R_{2}	5	6	5	1	0
R_{3}	8	6	4	1	0
R_{4}	2	4	4	4	0
R_{5}	6	10	9	4	0

Kako se traži maksimalna vrednost funkcije $F(X)$ postupak za rešavanje je sledeći:

1. U svakoj koloni se od svih elemenata oduzima naveci elemenat. Tako je dobijena tabela 3.

Tabela 3.

RADNA MESIA RADNIC	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
R_{1}	-3	-4	-4	-5	0
R_{2}	-4	-4	-5	-5	0
R_{3}	0	-4	-2	0	0
R_{4}	-6	-6	-5	-2	0
R_{5}	-2	0	0	-2	0

2. Znajuči da je $\max F(X)=C \cdot X=\min F_{1}(X)=-C X$ množe se elementi tabele 3 sa (-1) i dalje rešavanje se nastavlja po postupku za iznalaženje minimalne vrednosti funkcije kriterijuma.

Tabela 4.

	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
$\mathrm{R}_{1}{ }^{*}$	3	4	4	5	0
$\mathrm{R}_{2}{ }^{*}$	4	4	5	5	$\stackrel{!}{8}$
$-\mathrm{R}_{3}-$	0	-4-	-2-	- 8 -	$-\frac{1}{1}$
$\mathrm{R}_{4}{ }^{*}$	6	6	5	2	${ }_{1}^{1}$
R_{5}	2	0	-	2	$\stackrel{1}{0}$

3. U tabeli 4 razvrstane su nule na zavisne i nezavisne.
4. Rešenje nije optimalno, jer postoje samo tri nezavisne nule.
a) Označeni su redovi bez nezavisnih nula ($\mathbf{R}_{\mathbf{2}} \mathrm{i} \mathrm{R}_{\mathbf{4}}$).
b) Precrtane su kolone sa zavisnom nulom u označenom redu (M_{5}).
c) Označen je red sa nezavisnom nulom u precrtanoj koloni (R_{1}).
d) Ne postoji kolona sa zavisnom nulom u prvom redu, pa je precrtavanje kolona i obeležavanje redova završeno.
e) Precrtani su neobeleženi redovi.
f) Najmanji neprecrtani elemenat je 2 u polju (4;4).
g) Najmanji elemenat je dodat dvostruko precrtanim elementima.
h) Oduzet je najmanji elemenat od svih neprecrtanih elemenata.
i) Prepisani su precrtani elementi i dobijena je tabela 5.

Tabela 5.

	M_{1}	M_{2}	M_{3}	M_{4}	$\begin{array}{r} 1 \\ 1 \\ 1 \\ M_{5} \\ 1 \end{array}$
R_{1} *	1	2	2	3	0
R_{2} *	2	2	3	3	8
$--\mathrm{R}_{3}$	0	4	--2	- 0	2
$-\mathrm{R}_{4}-$	-4	-4	-3	0	$-\rho-$
$-\mathrm{R}_{5}-\cdots$	-2	0	-20	2	1

Pošto rešenje dato tabelom 5 nije optimalno ponovljen je postupak pod a) do i) i dobijena tabela 6.

Tabela 6.

	$\begin{gathered} 1 \\ 1 \\ 1 \\ M_{1} \\ 1 \end{gathered}$	M_{2}	M_{3}	$\begin{gathered} T \\ 1 \\ 1 \\ \mathbf{M}_{4} \\ 1 \end{gathered}$	$\begin{gathered} T \\ 1 \\ 1 \\ M_{5} \\ 1 \end{gathered}$
R, ${ }^{*}$	0	1	1	2	8
$\mathrm{R}_{2}{ }^{*}$	1	1	2	2	0
$\mathrm{R}_{3}{ }^{*}$	8	4	2	0	3
$\mathrm{R}_{4}{ }^{*}$	4	4	3	8	1
$-\mathrm{R}_{5}---$	-1	0	$-\infty-$	-2-	1-

Kako rešenje dato tabelom 6 nije optimalno postupak je ponovljen i dobijena je tabela 7.

Tabela 7.

RADNA MESTA RADNICI	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
R_{1}	\varnothing	\varnothing	\varnothing	2	0
R_{2}	1	0	1	2	\varnothing
R_{3}	0	3	1	\varnothing	3
R_{4}	4	3	2	0	1
R_{5}	3	\varnothing	0	3	4

Tabela 8.

RADNA MESTA RADNICI	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
R_{1}	\varnothing	\varnothing	0	2	\varnothing
R_{2}	1	\varnothing	1	2	0
R_{3}	0	3	1	\varnothing	3
R_{4}	4	3	2	0	1
R_{5}	3	0	\varnothing	3	4

Razvrstavanjem nula na zavisne i nezavisne dobijena su optimalna resenja:

- prvo (tabela 7)

$$
\begin{aligned}
& x_{15}=1, \quad x_{22}=1, \quad x_{31}=1, \quad x_{44}=1, x_{53}=1 \\
& F\left(X_{1}^{*}\right)=c_{15} x_{15}+c_{22} x_{22}+c_{31} x_{31}+c_{44} x_{44}+c_{53} x_{53}= \\
&=01+61+81+41+91=27
\end{aligned}
$$

- drugo (tabela 8)

$$
\begin{aligned}
& \mathrm{x}_{13}=1, \quad \mathrm{x}_{25}=1, \quad \mathrm{x}_{31}=1, \quad \mathrm{x}_{41}=1, \quad \mathrm{x}_{52}=1 \\
& \mathrm{~F}\left(\mathrm{X}_{2}^{*}\right)=\mathrm{c}_{13} \mathrm{x}_{13}+\mathrm{c}_{25} \mathrm{x}_{25}+\mathrm{c}_{31} \mathrm{x}_{31}+\mathrm{c}_{44} \mathrm{x}_{44}+\mathrm{c}_{52} \mathrm{x}_{52}= \\
&=5 \cdot 1+0 \cdot 1+8 \cdot 1+4 \cdot 1+10 \cdot 1=27 .
\end{aligned}
$$

Na osnovu prvog optimalnog rešenja konstatujemo da na prvo-radno mesto treba rasporediti trećeg radnika, na drugo drugog, na treće petog i na četvrto četvrtog. Prvi radnik neće biti zaposlen.

Na osnovu drugog optimalnog rešenja treba na radna mesta $\left(M_{1}, M_{2}, M_{3} i\right.$ M_{4}) rasporediti trećeg, petog, prvog i četvrtog radnika, respektivno. Drugi radnik neće biti zaposlen.

Znači, konkursna komisija mora iznaći novi kriterijum na osnovu koga će odlučiti da li da zaposli prvog ili drugog radnika.

2.6.3. Celobrojno programiranje

Problemi celobrojnog programiranja u opštem slučaju svode se na rešavanje zadataka linearnog i nelinearnog programiranja gde se kao poseban uslov postavlja da brojne vrednosti promenjjivih moraju biti celi nenegativni brojevi. Kao posebna klasa zadataka celobrojnog programiranja izdvajaju se zadaci kombinatornog karaktera, gde promenljive u matematičkom modelu mogu uzeti samo vrednost " 1 " ili " 0 ".

Problem celobrojnosti promenljivih namece se vrlo često kod odredene klase realnih problema. U sledecim primerima biće data opšta formulacija nekih tipičnih zadataka celobrojnog programiranja.

Preduzeće prözvodi n različitih tipova mašina. Za realizaciju proizvodnje potrebno je m različitih vrsta resursa sa kojima se raspolaže u ograničenim količinama $a_{1}, a_{2}, \ldots, a_{i}, \ldots, a_{m}$. Poznato je:
a_{ij} - normativ utroška i-tog resursa za proizvodnju jedne j-te mašine,
$c_{j}-$ dobit ostvarena isporukom jedne mašine j-tog tipa $(j=1,2, \ldots, n)$.

Pretpostavlja se da na kraju planskog perioda nije poželjno imati nedovršenih mašina.

Formirati matematički model problema, pod uslovom da preduzeće želi ostvariti maksimalnu dobit od proizvodnje.

Rešenje. Matematički model sačinjava funkcija cilja koja definiše ukupnu dobit koja ce se ostvariti u planskom periodu,

$$
F(X)=\sum_{j=1}^{n} c_{j} x_{j}=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{j} x_{j}+\ldots+c_{n} x_{n}
$$

koja zavisi od raspoloživih resursa, tj. uslovi u kojima se ostvaruje proizvodnja definisani su sistemom jednačina

$$
\begin{array}{ll}
\sum_{j=1}^{n} a_{i j} x_{j}=a_{i}, & i=1,2, \ldots, m \\
x_{j} \geqslant 0, & j=1,2, \ldots, n
\end{array}
$$

Brojne vrednosti promenljivih mogu biti samo celi brojevi.

54. Zadatak

Proizvodni proces karakteriše se sa n različitih vrsta poslova $(j=1,2, \ldots, n)$, odnosno radnih operacija. U planskom periodu kvantitativne mere za pojedine operacije su $b_{1}, b_{2}, \ldots, b_{j}, \ldots, b_{n}$. Takođe, zadata je matrica $\left\|_{r_{i j}}\right\|$ gde je $r_{i j}$ produktivnost i-tog tipa massine na j-tom poslu, zatim, matrica $\left\|c_{i j}\right\|, g d e ~ s u c_{i j}-$ troškovi obavljanja j-tog posla na mašini i-tog tipa, kao i cene c_{i} jedne mašine i-tog tipa.

Formirati matematicki model zadatka iznalaženja optimalnog masinskog parka, (tj. brojni iznos makina za svaki tip), kao i odredivanja optimalne raspodele masina na odredene poslove pod uslovom da se ostvare minimalni ukupni troskovi realizacie proizvodnog procesa.

Resenje. Matematički model problema formira se tako sto se uvode promenlijive:
y_{i} - ukupan broj masina i-tog tipa, $i=1,2, \ldots, m$.
x_{ij} - broj masina i-tog tipa koje se koriste za izvrsenje j.te vrste posla.
Očigledno je da promenljive y_{i} moraju biti celi brojevi, dok promenjjive $x_{i j}$ ne moraju ako se produktivnost masina $r_{i j}$ nije deljiva bez ostatka saodgovarajucim vrednostima b_{j}.

Polazeci od navedenih oznaka ukupne troškove u planskom periodu možemo definisati sledecim izrazom

$$
(\min) F(X, Y)=\sum_{i=1}^{m} c_{i} y_{i}+\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i j} x_{i j} .
$$

Potrebne kolǐ̌ine mašina definisane su sledecim sistemom jednačina

$$
\begin{array}{lr}
\sum_{i=1}^{m} r_{i j} x_{i j}=b_{j}, & (j=1,2, \ldots, n) \\
\sum_{j=1}^{n} x_{i j}=y_{i}, & (i=1,2, \ldots, m),
\end{array}
$$

gde su promenljive $\mathrm{x}_{\mathrm{ij}} \geqslant 0$, dok su $\mathrm{y}_{\mathrm{i}} \geqslant 0 \mathrm{i}$ celobrojne vrednosti.
Zadatak se sastoji u tome da se odrede takve celobrojne vrednosti promenljivih y_{i} i vrednosti promenljivih $X_{i j}$ za koje će funkcijd $F(X, Y)$ imati minimalnu vrednost, a ogranicenja nefe biti narušena.

55. Zadatak

Planskom organu pomorskog transporta stoje na raspolaganju m razlicitih tipova brodova u kolieicinama od $q_{1}, q_{2}, \ldots, q_{i}, \ldots, q_{m}$. Na svakom od brodova postoji n razlicitith prostora za utovar robe $(\mathrm{j}=1,2, \ldots, \mathrm{n})$, cijij $^{\text {su }}$ kapaciteti u
odnosu na vrstu robe $d_{i j k}$ (podrazumeva se da za određene vrednosti indeksa $i-j$ velicina $\mathrm{d}_{\mathrm{ijk}}$ može biti jednaka nuli). Potrebno je prevesti r razlicitih vrsta robe u kolixinama $b_{1}, b_{2}, \ldots, b_{k}, \ldots \ldots, b_{r}$.

Formirati matematicki model zadataka odredivanja optimalnog sastava brodova, ako su troskovi eksploatacije jednog broda i-tog tipa c_{i}.

Resenje. Optimalni sastav brodova formira se na bazi minimizacije ukupnih troškova eksploatacije, tj. treba odrediti brojne vrednosti skupa promenljivih y_{1}, $y_{2}, \ldots, y_{i}, \ldots, y_{m}$, za koje funkcija

$$
F(Y)=\sum_{i=1}^{m} c_{i} y_{i}
$$

ima minimalnu vrednost.
Ako sa \mathbf{x}_{jk} označimo broj jedinica robe \mathbf{k}-te vrste utovarene $\mathbf{u} \mathbf{j}$-ti prostor, tada se ogranicenja mogu definisati na sledeci nacin

$$
\begin{aligned}
& \sum_{i=1}^{m} d_{i j k} y_{i}-x_{j k} \geqslant 0, \\
& \sum_{j=1}^{n} x_{j k}=b_{k} \\
& 0<y_{i} \leqslant q_{i} i \quad x_{j k} \geqslant 0
\end{aligned}
$$

gde indeksi uzimaju vrednosti: $\mathrm{i}=1,2, \ldots, \mathrm{~m} ; \mathrm{j}=1,2, \ldots, \mathrm{n} ; \mathrm{i} \mathrm{k}=1,2, \ldots, \mathrm{r}$.
Promenljive u modelu y_{i} i $x_{j k}$ moraju biti celi brojevi

56. Zadatak

Problem planiranja upotrebe transportnih sredstava može se definisati na sledeci način. Postoji m razlicitih vista transportnih sredstava, koja se mogu koristiti u ograničenom broju časova, $a_{1}, a_{2}, \ldots, a_{i}, \ldots, a_{m}$. Ova sredstva treba upotrebiti na n razlicitih marš-ruta, pri とemu se na svakoj mart-ruti mora ostvariti određeni broj putovanja, što se definiše vrednostima $b_{1}, b_{2}, \ldots, b_{j}, \ldots, b_{n} . Z_{a}$ izvrsenje jednog putovanja i -tom masinom naj-toj mař-ruti potrebno je t_{ij} Casova, $u z$ troskove $c_{i j}$.

Formirati matematicki model celobrojnog programiranja, ako se zeli optimalno raspodeliti transportna sredstva tako da troškovi transporta budu minimalni.

Resenje. Ako se sa x_{ij} oznaci broj izvrsenih putovanja od strane i -tog transportnog sredstva upotrebljenog na j-toj maršruti,tada ce ukupni troskovi transporta biti definisani izrazom,

$$
F(X)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Pri upotrebi transportnih sredstava moraju biti zadovoljena ograničenja

$$
\begin{array}{ll}
\sum_{j=1}^{n} t_{i j} x_{i j} \leqslant a_{i}, & (i=1,2, \ldots, m) \\
\sum_{i=1}^{m} x_{i j}=b_{j}, & (j=1,2, \ldots, n)
\end{array}
$$

i opšti uslov da sve promenljive u modelu moraju biti vecte od nule i celobrojne.

2.6.4. Metode resavanja zadataka celobrojnog programiranja

Za rešavanje zadataka celobrojnog programiranja postoje razlicite metode koje baziraju na svojstvima pojedinih klasa zadataka celobrojnog programiranja.

Metoda odsečaka - bazira na sukcesivnom rešavanju konačnog broja specijalno formiranih zadataka linearnog programiranja. Svaki od zadàtaka formulise se na osnovi prethodnog, dodajuci već postojecim ogranicenjima novo linearno ogranicenje - "odsečak". Ovaj metod bice ilustrovan na konkretnim primerima.

Zadatak

Zadatak celobrojnog programiranja svodi se na matematicki model sa funkcijom cilja

$$
(\max) F(X)=x_{1}+4 x_{2}
$$

i uslovima definisanim linearnim ograničenjima,

$$
\begin{aligned}
& -x_{1}+2 x_{2}+x_{3}=2 \\
& 3 x_{1}+2 x_{2}+x_{4}=6 \\
& x_{j} \geqslant 0, \quad j=1,2,3,4
\end{aligned}
$$

Potrebno je naci celobrojne vrednosti promenljivih X_{1}, x_{2}, x_{3} i x_{4} koje obezbeđuju maksimum funkcije $\mathbf{F}(\mathbf{X})$, a istovremeno zadovoljavaju i ograničenja, definisana sistemom jednačina.

Rešenje. Algoritam za rešavanje postavljenog zadatka definisan je sa tri nezavisna koraka.

1. korak U ovom koraku zanemaruje se uslov celobrojnosti i rešava se zadatak linearnog programiranja L_{0}.

Primenom simpleks metode dobija se traženo rešenje, koje je prikazano tabelama 1, 2 i 3.

Tabela 1.

C_{0}	B	x_{0}	1	4	0	0
0	x_{3}	2	-1	2	1	0
0	x_{4}	6	3	2	0	1
$F_{j}-c_{j}$	0	-1	-4	0	0	

Tabela 2.

C_{0}	B	x_{0}	1	4	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
4	x_{2}	1	$-1 / 2$	1	$1 / 2$	0
0	x_{4}	4	4	0	-1	1
$F_{j}-c_{j}$		4	-3	0	2	0

Tabela 3.

c_{0}	x	x_{0}	1	4	0	0
		x_{1}	x_{2}	x_{3}	x_{4}	
4	x_{2}	$3 / 2$	0	1	$3 / 8$	$1 / 8$
1	x_{1}	1	1	0	$-1 / 4$	$1 / 4$
$F_{j}-c_{j}$		7	0	0	$5 / 4$	$3 / 4$

Dobijeno rešenje zadatka L_{0} je

$$
X^{0}=\left(1 ;-\frac{3}{2} ; 0 ; 0\right) \text { i } F(X)=7
$$

Kako ovo resenje nije celobrojno, prelazi se na drugi korak.
2. korak. Na osnovu poslednje simpleks tabele u 1. koraku formira se "odsečak" - nowo linearno ograničenje sa kojim se proširuje simpleks tabela i formira novi zadatak linearnog programiranja L_{1}.

U opštem slučaju novo ograničenje se formira na sledeći način. Ako se uvedu oznake:
\{a \} - decimalni deo broja a,
[a] - najveci ceo broj manji ili jednak datom broju a,
k - indeksi promenljivih koje u poslednjoj simpleks tabeli ne pripadaju bazi,
s - broj reda u posiednjoj simpleks tabeli sa najvecom vrednosctu a ${ }_{\text {so }}$,
tada se novo ograničenje (Gomory-jev odsečak) može pisati u obliku

$$
\left\{a_{s o}\right\}-\sum_{k}\left\{a_{s k}\right\} \cdot x_{k} \leqslant 0
$$

U gornjem primeru je:

$$
\begin{gathered}
\left\{a_{\text {so }}\right\}=\left\{\frac{3}{2}\right\}=\frac{1}{2}, \quad k=3 i 4 \\
\left\{a_{33}\right\}=\left\{\frac{3}{8}\right\}=\frac{3}{8} \text { i }\left\{a_{34}\right\}=\left\{\frac{1}{8}\right\}=\frac{1}{8}
\end{gathered}
$$

Prema tome, ogranicenje je oblika

$$
\frac{1}{2}-\frac{3}{8} x_{3}-\frac{1}{8} x_{4} \leqslant 0
$$

a uvođenjem nove izravnavajuče promenljive dobija se

$$
\frac{3}{8} x_{3}+\frac{1}{8} x_{4}-u_{1}=\frac{1}{2}
$$

ili ako jednačinu pomnožimo sa -1 dobija se izraz

$$
-\frac{3}{8} x_{3}-\frac{1}{8} x_{4}+u_{1}=-\frac{1}{2} .
$$

3. korak. Dodajući novo dobijeno ograničenje u poslednju simpleks tabelu dobija se početna simpleks tabela zadatka L_{1}.

Tabela 4.

				1	4	0	0
0	x_{0}		x_{2}	x_{3}	x_{4}	u_{1}	
4	x_{2}	$3 / 2$	0	1	$3 / 8$	$1 / 8$	0
1	x_{1}	1	1	0	$-1 / 4$	$1 / 4$	0
0	u_{1}	$-1 / 2$	0	0	$-3 / 8$	$-1 / 8$	1
$\mathrm{~F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$	7	0	0	$5 / 4$	$3 / 4$	0	

Tabela 4 ne sadrži moguće rešenje problema(jer je $u_{1}=-\frac{1}{2}$). Cilj dalje transformacije je dobijanje početnog mogućeg rešenja. Zato se u redu u_{1} bira kolona r sa najvecim negativnim brojem i proverava se da li se dobija

Za ono i koje odgovara negativnoj promenljivoj u_{1}. Ako je uslov ispunjen tada u novu bazu ulazi promenljiva $\mathbf{x}_{\mathbf{r}}$. U slučaju da ovo nije ispunjeno ide se na novu kolonu sa negativnim brojem.

U ovom primeru promenljiva x_{3} ulazi u sledeçe bazno rešenje, koje je istovremeno i moguce rešenje (tabela 5).

Tabela 5.

			1	4	0	0	0
C_{0}	B		x_{1}	x_{2}	x_{3}	x_{4}	u_{1}
4	x_{2}	1	0	1	0	0	1
1	x_{1}	$4 / 3$	1	0	0	$1 / 3$	$-2 / 3$
0	x_{3}	$4 / 3$	0	0	1	$1 / 3$	$-8 / 3$
$F_{j}-\mathrm{c}_{\mathrm{j}}$	$16 / 3$	0	0	0	$1 / 3$	$10 / 3$	

U tabeli 5 dobijeno je optimalno rešenje problema koje nije celobrojno. Prema tome, vraćamo se na korak 2.
2. korak. Formira se novo ograniČenje i novi zadatak L_{2}. Ograničenje se formira na bazi reda x_{1}, otuda je

$$
\begin{aligned}
& \left\{\frac{4}{3}\right\}-\left\{\frac{1}{3}\right\} \cdot x_{4}-\left\{-\frac{2}{3}\right\} \cdot u_{1} \leqslant 0 \\
& \text { Kako je }\left\{\frac{4}{3}\right\}=\frac{1}{3},\left\{\frac{1}{3}\right\}=\frac{1}{3} \quad i \\
& \left\{-\frac{2}{3}\right\}=-\frac{2}{3}-\left\{-\frac{2}{3}\right\}=-\frac{2}{3}-(-1)=\frac{1}{3}
\end{aligned}
$$

to ce ograničenje biti sledećeg oblika

$$
\frac{1}{3}-\frac{1}{3} x_{4}-\frac{1}{3} u_{1}+u_{2}=0
$$

gde je u_{2} nova izravnavajuća promenljiva. Prema tome, konaČna forma ograničenja je

$$
-\frac{1}{3} x_{4}-\frac{1}{3} u_{1}+u_{2}=-\frac{1}{3}
$$

Napomena. Pri odretivanju decimalnog dela negativnog meక̌ovitog broja treba imati u vidu opšti izraz

$$
\{-\mathbf{a}\}=-\mathbf{a}-[-\mathbf{a}]
$$

3. korak. Dodajuci napred formirano ogranicenje iz prethodnog koraka u posledñju simpleks tabelu (tabela 5) dobija se pocetna simpleks tabela za ovaj korak.

Tabela 6.

C_{0}	B	x_{0}	1	4	0	0	0	0
		x_{1}	x_{2}	x_{3}	x_{4}	u_{1}	u_{2}	
4	x_{2}	1	0	1	0	0	0	0
1	x_{1}	$4 / 3$	1	0	0	$1 / 3$	$-2 / 3$	0
0	x_{3}	$4 / 3$	0	0	1	$1 / 3$	$-8 / 3$	0
0	u_{2}	$-1 / 3$	0	0	0	$-1 / 3$	$-1 / 3$	1
$F_{j}-\mathrm{c}_{\mathrm{j}}$		$16 / 3$	0	0	0	$1 / 3$	$10 / 3$	0

Bazno rešenje u tabeli 6 nije moguce, otuda se za kolone x_{4} određuje

$$
(\min)\left\{\begin{aligned}
\frac{4}{3}: & \frac{1}{3}=4 \\
\frac{4}{3}: & \frac{1}{3}=4 \\
-\frac{1}{3}: & -\frac{1}{3}=1
\end{aligned}\right\}=1
$$

Kako minimum odgovara redu u_{2} to se u sledećoj iteraciji može dobiti moguće rešenje zadatka, koje je dato u tabeli 7.

Tabela 7.

C_{0}	B	x_{0}	1	4	0	0	0	0
		x_{1}	x_{2}	x_{3}	x_{4}	u_{1}	u_{2}	
4	x_{2}	1	0	1	0	0	1	0
1	x_{1}	1	1	0	0	0	-1	1
0	x_{3}	1	0	0	1	0	-3	1
0	x_{4}	1	0	0	0	1	1	-3
$\mathrm{~F}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$	5	0	0	0	0	3	1	

Novo dobijeno moguće rešenje je optimalno u smislu kriterijuma simpleks metoda. Takođe, dobijeno rešenje je optimalno za napred postavljeni zadatak celobrojnog programiranja, jer su vrednosti bazni promenljivih celobrojne, tj .

$$
x_{1}=1, \quad x_{2}=1, \quad x_{3}=1 \mathrm{i} \quad x_{4}=1
$$

Vrednost funkcije $F(X)$ je

$$
\max F(X)=5
$$

58. Zadatak

Naći rešenje zadataka celobrojnog programiranja:

$$
\begin{aligned}
& \text { a) }(\max) F(X)=10+2 x_{1}+2 x_{2} \\
& 2 x_{1}+x_{2}+x_{3}=5 \\
& 2 x_{1}+3 x_{2}+x_{4}=9
\end{aligned}
$$

b) $(\max) F(X)=3 x_{1}+4 x_{2}$

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \leqslant 8 \\
& x_{1}+4 x_{2} \leqslant 10 \\
& \text { c) }(\max) F(X)=21 x_{1}+11 x_{2} \\
& 7 x_{1}+4 x_{2}+x_{3}=13
\end{aligned}
$$

gde sve promenljive u modelima moraju biti veçe ili jednake nuli i celi brojevi.

Rešenje. Primenom metoda odsečaka dobijaju se rešenja:
a) Zadatak ima visestruko optimalno celobrojno rešenje:

$$
\begin{aligned}
& \text { 1. } x_{1}=0, \quad x_{2}=3, \quad x_{3}=2, \quad x_{4}=0 \\
& \text { 2. } x_{1}=1, \quad x_{2}=2, \quad x_{3}=1, \quad x_{4}=1 \\
& \text { 3. } x_{1}=2, \quad x_{2}=1, \quad x_{3}=0, \quad x_{4}=2 \\
& (\max) F(X)=16
\end{aligned}
$$

b) Optimalno celobrojno rešenje je:

$$
\mathrm{x}_{1}=1, \quad \mathrm{x}_{2}=2 \mathrm{i} \quad(\max) \mathrm{F}(\mathrm{X})=11 .
$$

c) Optimalno celobrojno rešenje je:

$$
\begin{aligned}
& x_{1}=0, \quad x_{2}=3, \quad x_{3}=1 \\
& (\max) F(X)=33
\end{aligned}
$$

59. Zadatak

$$
(\max) F(X)=6 x_{1}+x_{2}
$$

pod uslovom da je

$$
\begin{aligned}
-2,9 x_{1}+6 x_{2} & \leqslant 17,4 \\
3 x_{1}-x_{2} & \leqslant 1
\end{aligned}
$$

a promenljive $x_{1} \geqslant 0$ i $x_{2} \geqslant 0$ i celi brojevi.

Resénje. Ako se uvedu izravnavajuće promenljive matematički model se svodi na oblik

$$
\begin{aligned}
& (\max) F(X)=6 x_{1}+x_{2} \\
& -2,9 x_{1}+6 x_{2}+x_{3}=17,4 \\
& 3 x_{1}-x_{2}+x_{4}=1 \\
& x_{j} \geqslant 0, \quad j=1,2,3,4
\end{aligned}
$$

Iz dobijenog modela vidi se da promenljiva x_{3} ne mora biti celobrojna da bi promenljive X_{1} i x_{2} bile celobrojne. U ovom slučaju postupak rešavanja zadatka ima neke specifičnosti u odnosu na prethodni postupak rešavanja zadataka celobrojnog programiranja.

1. korak. U ovom koraku se rešava zadạtak zanemarujuci uslov celobrojnosti. Resienje problema dato je u sledecim simpleks tabelama.

Tabela 1.

C_{0}		B	x_{0}	6	1	0
		x_{1}	x_{2}	x_{3}	x_{4}	
0	x_{3}	17,4	$-2,9$	6	1	0
0	x_{4}	1	3	-1	0	1
$F_{j}-c_{j}$		0	-6	-1	0	0

Tabela 2.

C_{0}	x	x_{0}	6	1	0	0
		x_{1}	x_{2}	x_{3}	x_{4}	
0	x_{3}	$\frac{55,1}{3}$	0	$\frac{15,1}{3}$	1	$\frac{2,9}{3}$
6	x_{1}	$\frac{1}{3}$	1	$-\frac{1}{3}$	0	$\frac{1}{3}$
$F_{j}-c_{j}$		2	0	-3	0	2

Tabela 3.

C_{0}	B	x_{0}	6	1	0	0
			x_{1}	x_{2}	x_{3}	x_{4}
1	x_{2}	3,649	0	1	0,198	0,192
6	x_{1}	1,55	1	0	0,066	0,397
$F_{j}-c_{j}$		12,947	0	0	0,594	2,576

U poslednjoj tabeli (3), dobijeno je optimalno resenje. Međutim, promenljive nisu celobrojne.
2. korak U ovom koraku definise se drugi Gomory-jev presek, kao novo ograničenje u modelu

$$
\left\{a_{\mathrm{so}}\right\}-\sum_{k=1}^{\mathrm{m}} \alpha_{\mathrm{sk}} \mathrm{x}_{\mathrm{k}} \leqslant 0
$$

gde su $\alpha_{3 k}$ - koeficijenti koji se izračunavaju na osnovu sledećih izraza:

1) Za promenljive koje ne moraju biti celobrojne

$$
\alpha_{s k}=\left\{\begin{array}{l}
a_{\text {sk }}, \text { ako je } a_{s k} \geqslant 0 \\
\frac{\left\{a_{\text {so }}\right\}}{1-\left\{a_{\text {so }}\right\}} \cdot\left|a_{s k}\right|, \text { za } a_{s k}<0 ;
\end{array}\right.
$$

2) Za promenljive koje moraju biti celobrojne

$$
\alpha_{\text {sk }}=\left\{\begin{array}{l}
\left\{a_{s k}\right\}, \text { ako je }\left\{a_{s k}\right\} \leqslant\left\{a_{\text {so }}\right\}, \\
\frac{\left\{a_{s o}\right\}}{1-\left\{a_{s o}\right\}}\left(1-\left\{a_{s k}\right\}\right), \text { ako je }\left\{a_{s k}\right\}>\left\{a_{s o}\right\} .
\end{array}\right.
$$

Kako je

$$
\begin{gathered}
\left\{a_{50}\right\}=\{3,649\}=0,649 \\
\alpha_{13}=0,198 \quad \text { i } \quad \alpha_{14}=0,192
\end{gathered}
$$

to je ogranixenje oblika

$$
0,649-0,198 x_{3}-0,192 x_{4}+u_{1}=0
$$

odnosno, možemo pisati da je

$$
-0,198 x_{3}-0,192 x_{4}+u_{1}=-0,649
$$

3. korak. Dodajuci novo dobijeno ograničenje u poslednju simpleks tabehs dobija se nova početna simpleks tabela zadataka L_{1}.

Tabela 4.

			6	1	0	0	0
	C_{0}	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	u_{1}
1	x_{2}	3,649	0	1	0,198	0.192	0
6	x_{1}	1,55	1	0	0,066	0,397	0
0	u_{1}	$-0,649$	0	0	$-0,198$	$-0,192$	1
$F_{j}-c_{j}$	12,947	0	0	0,594	2,576	0	

Kako je

$$
\left.\begin{array}{rl}
(\min) & {\left[\begin{array}{l}
\frac{3,649}{0,198} \\
\frac{1,55}{0,066} \\
\\
\frac{-0,649}{-0,198}
\end{array}=23,48\right.} \\
\min \left[\begin{array}{l}
18,43
\end{array}\right]=3,28, \\
{\left[\begin{array}{l}
\frac{3,649}{0,192}
\end{array}=19,005\right.} \\
\frac{1,55}{0,397}=3,9 \\
\frac{-0,649}{-0,192} & =3,38
\end{array}\right]=3,38,
$$

to se uvođenjem promenljive x_{3} ili $x_{4} u$ bazu mozze dobiti moguče rešenje. Novo moguce resenje je prikazano u sledecoj simpleks tabeli (tabela 5).

Tabela 5.

C_{0}	B	x_{0}	6	1	0	0	0
			x_{1}	x_{2}	x_{3}	x_{4}	u_{1}
1	x_{2}	3	0	1	0	0	1
6	x_{1}	1,33	1	0	0	0,333	0,333
0	x_{3}	3,28	0	0	1	0,97	$-5,05$
$F_{j}-c_{j}$	10,99	0	0	0	2	3	

Dobijeno reŠenje je optimalno. Međutim, kako promenljiva x_{1} nije celobrojna, vracamo se na korak 2.
2. korak. Formira se novo ograničenje i novi zadatak L_{2}. Ograničenje se formira na osnovu reda x_{1} u prethodnoj tabeli 5 . Otuda se dobija

$$
0,33-0,333 x_{4}-0,333 u_{1}+u_{2}=0,
$$

odnosno, ako se jednačina sredi

$$
-0,333 x_{4}-0,333 u_{1}+u_{2}=-0,33
$$

3. korak. Proširena simpleks tabela je

Tabela 6.

C_{0}	B	x_{0}	6	1	0	0	0	0
			x_{1}	x_{2}	x_{3}	x_{4}	u_{1}	u_{2}
1	x_{2}	3	0	1	0	0	1	0
6	x_{1}	1,33	1	0	0	0,333	0,333	0
0	x_{3}	3,28	0	0	1	0,97	$-5,05$	0
0	u_{2}	$-0,33$	0	0	0	$-0,333$	$-0,333$	1
$F_{j}-c_{j}$	10,99	0	0	0	2	2	0	

Kako je

$$
\left[\begin{array}{l}
\frac{1,33}{0,333}=3,99 \\
\frac{3,28}{0,97}=3,38 \\
\frac{-0,33}{-0,333}=1
\end{array}\right]=1
$$

to se moguce rešenje može dobiti uvođenjem u bazu promenljive x_{4}, kao što je to pokazano u tabeli 7 .

Tabela 7.

C_{0}	B	x_{0}	6	1	0	0	0	0
			x_{1}	x_{2}	x_{3}	x_{4}	u_{1}	u_{2}
1	x_{2}	3	0	1	0	0	1	0
6	x_{1}	1	1	0	0	0	0	1
0	x_{3}	2,31	0	0	1	0	$-6,02$	$-15,15$
0	x_{4}	1	0	0	0	1	1	-3
$F_{j}-c_{j}$	9	0	0	0	0	1	6	

U tabeli 7 dobijeno je optimalno rešenje zadataka celobrojnog programiranja,

$$
x_{1}=1, \quad x_{2}=3, \quad x_{4}=1 \quad i \quad(\max) F(X)=9
$$

Za promenljivu X_{3} nije se tražilo da ima celobrojnu vrednost.
60. Zadatak

Resiti zadatke celobrojnog programiranja definisane matematickim modelima:
a) $(\max) F(X)=x_{1}+8 x_{2}$

$$
3 x_{1}+x_{2} \leqslant 9
$$

$$
0,16 x_{1}+x_{2} \leqslant 1,9
$$

$\mathrm{x}_{1} \geqslant 0, \quad \mathrm{x}_{2} \geqslant 0 \quad$ i celi brojevi.
b) $(\max) F(X)=0,25 x_{1}+x_{2}$
$0,5 x_{1}+x_{2} \leqslant 1,75$
$x_{1}+0,3 x_{2}<1,5$
$\mathrm{x}_{1} \geqslant 0, \mathrm{x}_{2} \geqslant 0 \quad$ i celi brojevi.
c) $(\max) F(X)=8 x_{1}+6 x_{2}$
$3 x_{1}+5 x_{2}+x_{3}=11$
$4 x_{1}+x_{2}+x_{4}=8$
$x_{1} \geqslant 0$ i celobrojno, $x_{2} \geqslant 0$.

Resenje. Primenom napred izloženog metoda celobrojnog programiranja (zadatak 58.) dobijaju se rešenja:
a) $\dot{x_{1}}=2, x_{2}=1 \mathrm{i}(\max) F(X)=10$. Izravnavajuće promenljive su: $\mathrm{x}_{3}=2 \mathrm{i}$ $x_{4}=0,58$;
b) $\mathrm{x}_{1}=1, \mathrm{x}_{2}=1 \mathrm{i}(\max) \mathrm{F}(\mathrm{X})=1,25$. Izravnavajuce promenjive su : $x_{3}=0,25$ i $x_{4}=0,2$;
c) $x_{1}=1, x_{2}=1,6 i(\max) F(X)=17,62$.

General Cutting Planes

Consider the following integer program:

Maximize	$7 x_{1}+9 x_{2}$
subject to	$-x_{1}+3 x_{2} \leq 6$
	$7 x_{1}+x_{2} \leq 35$
	x_{1},
	$x_{2} \geq 0$ integer.

If we ignore integrality, we get the following optimal tableau (with the updated columns and reduced costs shown for nonbasic variables):

Variable	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{s}_{\mathbf{1}}$	$\boldsymbol{s}_{\mathbf{2}}$	$-\boldsymbol{z}$	RHS
$\boldsymbol{x}_{\mathbf{2}}$	0	1	$7 / 22$	$1 / 22$	0	$7 / 2$
$\boldsymbol{x}_{\mathbf{1}}$	1	0	$-1 / 22$	$3 / 22$	0	$\mathbf{9} / 2$
$-\boldsymbol{z}$	0	0	$28 / 11$	$15 / 11$	1	63

Let's look at the first constraint:

$$
x_{2}+7 / 22 s_{1}+1 / 22 s_{2}=7 / 2
$$

We can manipulate this to put all of the integer parts on the left side, and all the fractional parts on the right to get:

$$
x_{2}-3=1 / 2-7 / 22 s_{1}-1 / 22 s_{2}
$$

Now, note that the left hand side consists only of integers, so the right hand side must add up to an integer. Which integer can it be? Well, it consists of some positive fraction minus a series of positive values. Therefore, the right hand side can only be $0,-1,-2, \ldots$; it cannot be a positive value. Therefore, we have derived the following constraint:

$$
1 / 2-7 / 22 s_{1}-1 / 22 s_{2} \leq 0 .
$$

This constraint is satisfied by every feasible integer solution to our original problem. But, in our current solution, $\boldsymbol{s}_{\mathbf{1}}$ and $\boldsymbol{s}_{\mathbf{2}}$ both equal 0 , which is infeasible to the above constraint. This means the above constraint is a cut, called the Gomory cut after its discoverer. We can now add this constraint to the linear program and be guaranteed to find a different solution, one that might be integer.

We can also generate a cut from the other constraint. Here we have to be careful to get the signs right:

$$
\begin{aligned}
x_{1}-1 / 22 s_{1}+3 / 22 s_{2} & =9 / 2 \\
x_{1}+(-1+21 / 22) s_{1}+3 / 22 s_{2} & =4+1 / 2 \\
x_{1}-s_{1}-4 & =1 / 2-21 / 22 s_{1}-3 / 22 s_{2}
\end{aligned}
$$

gives the constraint

$$
1 / 2-21 / 22 s_{1}-3 / 22 s_{2} \leq 0
$$

In general, let $\lfloor a\rfloor$ be defined as the largest integer less than or equal to a. For example, $\lfloor 3.9\rfloor=3$, $\lfloor 5\rfloor=5$, and $\lfloor-1.3\rfloor=-2$.

If we have a constraint

$$
x_{k}+\sum a_{i} x_{i}=b
$$

with b not an integer, we can write each $a_{i}=\left\lfloor a_{i}\right\rfloor+a_{i}^{\prime}$, for some $0 \leq a_{i}^{\prime}<1$, and $b=\lfloor b\rfloor+b^{\prime}$ for some $0 ; S P M l t ; b^{\prime} ; S P M l t ; 1$. Using the same steps we get:

$$
x_{k}+\sum\left\lfloor a_{i}\right\rfloor x_{i}-\lfloor b\rfloor=b^{\prime}-\sum a_{i}^{\prime} x_{i}
$$

to get the cut

$$
b^{\prime}-\sum a_{i}^{\prime} x_{i} \leq 0
$$

This cut can then be added to the linear program and the problem resolved. The problem is guaranteed not to get the same solution.

This method can be shown to guarantee finding the optimal integer solution. There are a couple of disadvantages:

1. Round-off error can cause great difficulties: Is that 3.000000001 really a 3 , or should I generate a cut? If I make the wrong decision I could either cut off a feasible solution (if it is really a 3 but I generate a cut) or I could end up with an infeasible solution (if it is not a 3 but I treat it as one).
2. The number of constraints that are generated can be enormous. Just like branch and bound can generate a huge number of subproblems, this technique can generate a huge number of constraints.

The combination of these makes this cutting plane technique impractical by itself. Recently however, more powerful techniques have been discovered for special problem structure. This is the subject of the next section.

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS—A SAMPLE PROBLEM

Whereas the simplex method is effective for solving linear programs, there is no single technique for solving integer programs. Instead, a number of procedures have been developed, and the performance of any particular technique appears to be highly problem-dependent. Methods to date can be classified broadly as following one of three approaches:
i) enumeration techniques, including the branch-and-bound procedure;
ii) cutting-plane techniques; and
iii) group-theoretic techniques.

In addition, several composite procedures have been proposed, which combine techniques using several of these approaches. In fact, there is a trend in computer systems for integer programming to include a number of approaches and possibly utilize them all when analyzing a given problem. In the sections to follow, we shall consider the first two approaches in some detail. At this point, we shall introduce a specific problem and indicate some features of integer programs. Later we will use this example to illustrate and motivate the solution procedures. Many characteristics of this example are shared by the integer version of the custommolder problem presented in Chapter 1.

The problem is to determine z^{*} where:

$$
z^{*}=\max z=5 x_{1}+8 x_{2}
$$

subject to:

$$
\begin{aligned}
x_{1}+x_{2} & \leq 6 \\
5 x_{1}+9 x_{2} & \leq 45 \\
x_{1}, x_{2} \geq 0 & \text { and integer. }
\end{aligned}
$$

The feasible region is sketched in Fig. 9.8. Dots in the shaded region are feasible integer points.

Figure 9.8 An integer programming example.
If the integrality restrictions on variables are dropped, the resulting problem is a linear program. We will call it the associated linear program. We may easily determine its optimal solution graphically. Table 9.1 depicts some of the features of the problem.

Table 9.1 Problem features.

	Continuous optimum	Round off	Nearest feasible point	Integer optimum
x_{1}	$\frac{9}{4}=2.25$	2	2	0
x_{2}	$\frac{15}{4}=3.75$	4	3	5
z	41.25	Infeasible	34	40

Observe that the optimal integer-programming solution is not obtained by rounding the linear-programming solution. The closest point to the optimal linear-program solution is not even feasible. Also, note that the nearest feasible integer point to the linear-program solution is far removed from the optimal integer point. Thus, it is not sufficient simply to round linear-programming solutions. In fact, by scaling the righthand-side and cost coefficients of this example properly, we can construct a problem for which the optimal integerprogramming solution lies as far as we like from the rounded linear-programming solution, in either z value or distance on the plane.

In an example as simple as this, almost any solution procedure will be effective. For instance, we could easily enumerate all the integer points with $x_{1} \leq 9, x_{2} \leq 6$, and select the best feasible point. In practice, the number of points to be considered is likely to prohibit such an exhaustive enumeration of potentially feasible points, and a more sophisticated procedure will have to be adopted.

Figure 9.9 Subdividing the feasible region.

9.5 BRANCH-AND-BOUND

Branch-and-bound is essentially a strategy of 'divide and conquer.'" The idea is to partition the feasible region into more manageable subdivisions and then, if required, to further partition the subdivisions. In general, there are a number of ways to divide the feasible region, and as a consequence there are a number of branch-and-bound algorithms. We shall consider one such technique, for problems with only binary variables, in Section 9.7. For historical reasons, the technique that will be described next usually is referred to as the branch-and-bound procedure.

Basic Procedure

An integer linear program is a linear program further constrained by the integrality restrictions. Thus, in a maximization problem, the value of the objective function, at the linear-program optimum, will always be an upper bound on the optimal integer-programming objective. In addition, any integer feasible point is always a lower bound on the optimal linear-program objective value.

The idea of branch-and-bound is to utilize these observations to systematically subdivide the linearprogramming feasible region and make assessments of the integer-programming problem based upon these subdivisions. The method can be described easily by considering the example from the previous section. At first, the linear-programming region is not subdivided: The integrality restrictions are dropped and the associated linear program is solved, giving an optimal value z^{0}. From our remark above, this gives the upper bound on $z^{*}, z^{*} \leq z^{0}=41 \frac{1}{4}$. Since the coefficients in the objective function are integral, z^{*} must be integral and this implies that $z^{*} \leq 41$.

Next note that the linear-programming solution has $x_{1}=2 \frac{1}{4}$ and $x_{2}=3 \frac{3}{4}$. Both of these variables must be integer in the optimal solution, and we can divide the feasible region in an attempt to make either integral. We know that, in any integer programming solution, x_{2} must be either an integer ≤ 3 or an integer ≥ 4. Thus, our first subdivision is into the regions where $x_{2} \leq 3$ and $x_{2} \geq 4$ as displayed by the shaded regions L_{1} and L_{2} in Fig. 9.9. Observe that, by making the subdivisions, we have excluded the old linear-program solution. (If we selected x_{1} instead, the region would be subdivided with $x_{1} \leq 2$ and $x_{1} \geq 3$.)

The results up to this point are pictured conveniently in an enumeration tree (Fig. 9.10). Here L_{0} represents the associated linear program, whose optimal solution has been included within the L_{0} box, and the upper bound on z^{*} appears to the right of the box. The boxes below correspond to the new subdivisions; the constraints that subdivide L_{0} are included next to the lines joining the boxes. Thus, the constraints of L_{1} are those of L_{0} together with the constraint $x_{2} \geq 4$, while the constraints of L_{2} are those of L_{0} together with the constraint $x_{2} \leq 3$.

The strategy to be pursued now may be apparent: Simply treat each subdivision as we did the original problem. Consider L_{1} first. Graphically, from Fig. 9.9 we see that the optimal linear-programming solution

Figure 9.10 Enumeration tree.

Figure 9.11 Subdividing the region L_{1}.
lies on the second constraint with $x_{2}=4$, giving $x_{1}=\frac{1}{5}(45-9(4))=\frac{9}{5}$ and an objective value $z=$ $5\left(\frac{9}{5}\right)+8(4)=41$. Since x_{1} is not integer, we subdivide L_{1} further, into the regions L_{3} with $x_{1} \geq 2$ and L_{4} with $x_{1} \leq 1 . L_{3}$ is an infeasible problem and so this branch of the enumeration tree no longer needs to be considered.

The enumeration tree now becomes that shown in Fig. 9.12. Note that the constraints of any subdivision are obtained by tracing back to L_{0}. For example, L_{4} contains the original constraints together with $x_{2} \geq 4$ and $x_{1} \leq 2$. The asterisk $(*)$ below box L_{3} indicates that the region need not be subdivided or, equivalently, that the tree will not be extended from this box.

At this point, subdivisions L_{2} and L_{4} must be considered. We may select one arbitrarily; however, in practice, a number of useful heuristics are applied to make this choice. For simplicity, let us select the subdivision most recently generated, here L_{4}. Analyzing the region, we find that its optimal solution has

$$
x_{1}=1, \quad x_{2}=\frac{1}{9}(45-5)=\frac{40}{9}
$$

Since x_{2} is not integer, L_{4} must be further subdivided into L_{5} with $x_{2} \leq 4$, and L_{6} with $x_{2} \geq 5$, leaving L_{2}, L_{5} and L_{6} yet to be considered.

Treating L_{5} first (see Fig. 9.13), we see that its optimum has $x_{1}=1, x_{2}=4$, and $z=37$. Since this is the best linear-programming solution for L_{5} and the linear program contains every integer solution in L_{5}, no integer point in that subdivision can give a larger objective value than this point. Consequently, other points

Figure 9.12

Figure 9.13 Final subdivisions for the example.
in L_{5} need never be considered and L_{5} need not be subdivided further. In fact, since $x_{1}=1, x_{2}=4, z=37$, is a feasible solution to the original problem, $z^{*} \geq 37$ and we now have the bounds $37 \leq z^{*} \leq 41$. Without further analysis, we could terminate with the integer solution $x_{1}=1, x_{2}=4$, knowing that the objective value of this point is within 10 percent of the true optimum. For convenience, the lower bound $z^{*} \geq 37$ just determined has been appended to the right of the L_{5} box in the enumeration tree (Fig. 9.14).

Although $x_{1}=1, x_{2}=4$ is the best integer point in L_{5}, the regions L_{2} and L_{6} might contain better feasible solutions, and we must continue the procedure by analyzing these regions. In L_{6}, the only feasible point is $x_{1}=0, x_{2}=5$, giving an objective value $z=+40$. This is better than the previous integer point and thus the lower bound on z^{*} improves, so that $40 \leq z^{*} \leq 41$. We could terminate with this integer solution knowing that it is within 2.5 percent of the true optimum. However, L_{2} could contain an even better integer solution.

The linear-programming solution in L_{2} has $x_{1}=x_{2}=3$ and $z=39$. This is the best integer point in L_{2} but is not as good as $x_{1}=0, x_{2}=5$, so the later point (in L_{6}) must indeed be optimal. It is interesting to note that, even if the solution to L_{2} did not give x_{1} and x_{2} integer, but had $z<40$, then no feasible (and, in particular, no integer point) in L_{2} could be as good as $x_{1}=0, x_{2}=5$, with $z=40$. Thus, again $x_{1}=0, x_{2}=5$ would be known to be optimal. This observation has important computational implications,

Figure 9.14
since it is not necessary to drive every branch in the enumeration tree to an integer or infeasible solution, but only to an objective value below the best integer solution.

The problem now is solved and the entire solution procedure can be summarized by the enumeration tree in Fig. 9.15.

Figure 9.15

Further Considerations

There are three points that have yet to be considered with respect to the branch-and-bound procedure:
i) Can the linear programs corresponding to the subdivisions be solved efficiently?
ii) What is the best way to subdivide a given region, and which unanalyzed subdivision should be considered next?
iii) Can the upper bound ($z=41$, in the example) on the optimal value z^{*} of the integer program be improved while the problem is being solved?

The answer to the first question is an unqualified yes. When moving from a region to one of its subdivisions, we add one constraint that is not satisfied by the optimal linear-programming solution over the parent region. Moreover, this was one motivation for the dual simplex algorithm, and it is natural to adopt that algorithm here.

Referring to the sample problem will illustrate the method. The first two subdivisions L_{1} and L_{2} in that example were generated by adding the following constraints to the original problem:

$$
\begin{array}{lllll}
\text { For subdivision 1: } & x_{2} \geq 4 & \text { or } & x_{2}-s_{3}=4 & \left(s_{3} \geq 0\right) \\
\text { For subdivision 2: } & x_{2} \leq 3 & \text { or } & x_{2}+s_{4}=3 & \left(s_{4} \geq 0\right)
\end{array}
$$

In either case we add the new constraint to the optimal linear-programming tableau. For subdivision 1 , this gives:

where s_{1} and s_{2} are slack variables for the two constraints in the original problem formulation. Note that the new constraint has been multiplied by -1 , so that the slack variable s_{3} can be used as a basic variable. Since the basic variable x_{2} appears with a nonzero coefficient in the new constraint, though, we must pivot to isolate this variable in the second constraint to re-express the system as:

$$
\begin{gathered}
\text { (-z) } \begin{array}{c}
-\frac{5}{4} s_{1}-\frac{3}{4} s_{2} \\
x_{1} \\
x_{2}-\frac{5}{4} s_{1}+\frac{1}{4} s_{2} \\
-\frac{5}{4} s_{1} \\
-\frac{1}{4} s_{2} \\
x_{1}+\frac{1}{4} s_{2}+s_{3} \\
x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0
\end{array}=\frac{15}{4},
\end{gathered}
$$

These constraints are expressed in the proper form for applying the dual simplex algorithm, which will pivot next to make s_{1} the basic variable in the third constraint. The resulting system is given by:

$$
\begin{aligned}
(-z) \quad-s_{2}-s_{3} & =-41, \\
\quad+\frac{1}{5} s_{2}+\frac{9}{5} s_{3} & =\frac{9}{5}, \\
x_{1} \quad-s_{3} & =4, \\
x_{2} \quad & \frac{1}{5}, \\
s_{1}-\frac{1}{5} s_{2}-\frac{4}{5} s_{3} & = \\
x_{1}, x_{2}, s_{1}, s_{2}, & s_{3} \geq 0
\end{aligned}
$$

This tableau is optimal and gives the optimal linear-programming solution over the region L_{1} as $x_{1}=\frac{9}{5}, x_{2}=$ 4 , and $z=41$. The same procedure can be used to determine the optimal solution in L_{2}.

When the linear-programming problem contains many constraints, this approach for recovering an optimal solution is very effective. After adding a new constraint and making the slack variable for that constraint basic, we always have a starting solution for the dual-simplex algorithm with only one basic variable negative. Usually, only a few dual-simplex pivoting operations are required to obtain the optimal solution. Using the primal-simplex algorithm generally would require many more computations.

Figure 9.16
Issue (ii) raised above is very important since, if we can make our choice of subdivisions in such a way as to rapidly obtain a good (with luck, near-optimal) integer solution \hat{z}, then we can eliminate many potential subdivisions immediately. Indeed, if any region has its linear programming value $z \leq \hat{z}$, then the objective value of no integer point in that region can exceed \hat{z} and the region need not be subdivided. There is no universal method for making the required choice, although several heuristic procedures have been suggested, such as selecting the subdivision with the largest optimal linear-programming value. ${ }^{\dagger}$

Rules for determining which fractional variables to use in constructing subdivisions are more subtle. Recall that any fractional variable can be used to generate a subdivision. One procedure utilized is to look ahead one step in the dual-simplex method for every possible subdivision to see which is most promising. The details are somewhat involved and are omitted here. For expository purposes, we have selected the fractional variable arbitrarily.

Finally, the upper bound \bar{z} on the value z^{*} of the integer program can be improved as we solve the problem. Suppose for example, that subdivision L_{2} was analyzed before subdivisions L_{5} or L_{6} in our sample problem. The enumeration tree would be as shown in Fig. 9.16.

At this point, the optimal solution must lie in either L_{2} or L_{4}. Since, however, the largest value for any feasible point in either of these regions is $40 \frac{5}{9}$, the optimal value for the problem z^{*} cannot exceed $40 \frac{5}{9}$. Because z^{*} must be integral, this implies that $z^{*} \leq 40$ and the upper bound has been improved from the value 41 provided by the solution to the linear program on L_{0}. In general, the upper bound is given in this way as the largest value of any 'hanging'" box (one that has not been divided) in the enumeration tree.

Summary

The essential idea of branch-and-bound is to subdivide the feasible region to develop bounds $\underline{z}<z^{*}<\bar{z}$ on z^{*}. For a maximization problem, the lower bound \underline{z} is the highest value of any feasible integer point encountered. The upper bound is given by the optimal value of the associated linear program or by the largest value for the objective function at any 'hanging'' box. After considering a subdivision, we must branch to (move to) another subdivision and analyze it. Also, if either

[^0]i) the linear program over L_{j} is infeasible;
ii) the optimal linear-programming solution over L_{j} is integer; or
iii) the value of the linear-programming solution z^{j} over L_{j} satisfies $z^{j} \leq \underline{z}$ (if maximizing),
then L_{j} need not be subdivided. In these cases, integer-programming terminology says that L_{j} has been fathomed. ${ }^{\dagger}$ Case (i) is termed fathoming by infeasibility, (ii) fathoming by integrality, and (iii) fathoming by bounds.

The flow chart in Fig. 9.17 summarizes the general procedure.

Figure 9.17 Branch-and-bound for integer-programming maximization.

[^1]

Figure 9.18

Branch and Bound

We will explain branch and bound by using the capital budgeting example from the previous section. In that problem, the model is

$$
\begin{aligned}
\text { Maximize } & 8 x_{1}+11 x_{2}+6 x_{3}+4 x_{4} \\
\text { subject to } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 14 \\
& x_{j} \in\{0,1\} j=1, \ldots 4 .
\end{aligned}
$$

The linear relaxation solution is $\boldsymbol{x}_{\mathbf{1}}=1, \boldsymbol{x}_{\mathbf{2}}=1, \boldsymbol{x}_{\mathbf{3}}=\mathbf{0} .5, \boldsymbol{x}_{4}=\mathbf{0}$ with a value of 22 . We know that no integer solution will have value more than 22 . Unfortunately, since \boldsymbol{x}_{3} is not integer, we do not have an integer solution yet.

We want to force $\boldsymbol{x}_{\mathbf{3}}$ to be integer. To do so, we branch on $\boldsymbol{x}_{\mathbf{3}}$, creating two new problems. In one, we will add the constraint $\boldsymbol{x}_{\mathbf{3}}=\mathbf{0}$. In the other, we add the constraint $\boldsymbol{x}_{\mathbf{3}}=1$. This is illustrated in Figure 2 .

Figure 2: First Branching
Note that any optimal solution to the overall problem must be feasible to one of the subproblems. If we solve the linear relaxations of the subproblems, we get the following solutions:

- $\boldsymbol{x}_{3}=0$: objective 21.65, $\boldsymbol{x}_{1}=1, \boldsymbol{x}_{2}=1, \boldsymbol{x}_{3}=0, \boldsymbol{x}_{4}=0.667$;
$\cdot \boldsymbol{x}_{3}=1$: objective 21.85, $\boldsymbol{x}_{1}=1, \boldsymbol{x}_{2}=0.714, \boldsymbol{x}_{3}=1, \boldsymbol{x}_{4}=0$.

At this point we know that the optimal integer solution is no more than 21.85 (we actually know it is less than or equal to 21 (Why?)), but we still do not have any feasible integer solution. So, we will take a subproblem and branch on one of its variables. In general, we will choose the subproblem as follows:

- We will choose an active subproblem, which so far only means one we have not chosen before, and
- We will choose the subproblem with the highest solution value (for maximization) (lowest for
minimization).
In this case, we will choose the subproblem with $\boldsymbol{x}_{\mathbf{3}}=1$, and branch on $\boldsymbol{x}_{\mathbf{2}}$. After solving the resulting subproblems, we have the branch and bound tree in Figure 3.

Figure 3: Second Branching
The solutions are:
$\cdot \boldsymbol{x}_{3}=1, \boldsymbol{x}_{2}=0$: objective $18, \boldsymbol{x}_{\mathbf{1}}=1, \boldsymbol{x}_{2}=\mathbf{0}, \boldsymbol{x}_{3}=1, \boldsymbol{x}_{4}=1$;
$\cdot \boldsymbol{x}_{3}=1, \boldsymbol{x}_{2}=1:$ objective 21.8, $\boldsymbol{x}_{1}=0.6, \boldsymbol{x}_{2}=1, \boldsymbol{x}_{3}=1, \boldsymbol{x}_{4}=0$.
We now have a feasible integer solution with value 18 . Furthermore, since the $\boldsymbol{x}_{3}=1, \boldsymbol{x}_{2}=0$ problem gave an integer solution, no further branching on that problem is necessary. It is not active due to integrality of solution. There are still active subproblems that might give values more than 18 . Using our rules, we will branch on problem $\boldsymbol{x}_{\mathbf{3}}=1, \boldsymbol{x}_{\mathbf{2}}=1$ by branching on $\boldsymbol{x}_{\mathbf{1}}$ to get Figure 4 .

Figure 4: Third Branching
The solutions are:
$\cdot \boldsymbol{x}_{3}=1, \boldsymbol{x}_{2}=1, \boldsymbol{x}_{\mathbf{1}}=0:$ objective 21, $\boldsymbol{x}_{\mathbf{1}}=0, \boldsymbol{x}_{2}=1, \boldsymbol{x}_{3}=1, \boldsymbol{x}_{4}=1 ;$

- $\boldsymbol{x}_{3}=1, \boldsymbol{x}_{2}=1, \boldsymbol{x}_{\mathbf{1}}=1$: infeasible.

Our best integer solution now has value 21 . The subproblem that generates that is not active due to integrality of solution. The other subproblem generated is not active due to infeasibility. There is still a subproblem that is active. It is the subproblem with solution value 21.65. By our "round-down" result, there is no better solution for this subproblem than 21 . But we already have a solution with value 21 . It is not useful to search for another such solution. We can fathom this subproblem based on the above bounding argument and mark it not active. There are no longer any active subproblems, so the optimal solution value is 21 .

We have seen all parts of the branch and bound algorithm. The essence of the algorithm is as follows:

1. Solve the linear relaxation of the problem. If the solution is integer, then we are done. Otherwise
create two new subproblems by branching on a fractional variable.
2. A subproblem is not active when any of the following occurs:
3. You used the subproblem to branch on,
4. All variables in the solution are integer,
5. The subproblem is infeasible,
6. You can fathom the subproblem by a bounding argument.
7. Choose an active subproblem and branch on a fractional variable. Repeat until there are no active subproblems.

That's all there is to branch and bound! Depending on the type of problem, the branching rule may change somewhat. For instance, if x is restricted to be integer (but not necessarily 0 or 1), then if $x=4.27$ your would branch with the constraints $\boldsymbol{x} \leq 4$ and $\boldsymbol{x} \geq 5$ (not on $x=4$ and $x=5$).

In the worst case, the number of subproblems can get huge. For many problems in practice, however, the number of subproblems is quite reasonable.

For an example of a huge number of subproblems, try the following in LINGO:

```
model:
    sets:
        a /1..17/: x;
    endsets
    max = -x0 + @sum(a: 2 * x);
    x0 + @sum(a: 2 * x) < 17;
    @for (a: @bin(x));
end
```

Note that this problem has only 18 variables and only a single constraint. LINDO looks at 48,619 subproblems, taking about 20 minutes on a Sun Sparc workstation, before deciding the optimal objective is 16. LINGO on a 16 MHz 386 PC (with math coprocessor) looks at $48,000+$ subproblems and takes about five hours. CPLEX on a Sun SPARC 10 takes about 50 seconds to examine 61,497 subproblems (counting those that are fathomed without solving the LP). The 100 variable version of this problem would take about 10^{29} subproblems or about 3×10^{18} years (at 1000 subproblems per second). Luckily, most problems take far less time.

Exercise 5 (Optional) Solve the following problem by the branch and bound algorithm. For convenience, always select x_{1} as the branching variable when both x_{1} and x_{2} are fractional.

$$
\begin{array}{ll}
\text { Marimize } & x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}+5 x_{2} \leq 16 \\
& 6 x_{1}+5 x_{2} \leq 30 \\
& x_{1}, x_{2} \geq 0 \text { and integer. }
\end{array}
$$

Exercise 6 (Optional) Repeat the preceeding exercise assuming that x_{1} only is restricted to integer values.

Exercise 7 (Optional) Consider the following cargo-loading problem, where five items are to be loaded on a vessel. The weights w_{i} and the volume v_{i} per unit of the different itens as well as their corresponding values r_{i} are tabulated as follows.

Item i	w_{i}	v_{i}	r_{i}
1	5	1	4
2	8	8	7
3	3	6	6
4	2	5	5
5	7	4	4

The naximum cargo weight and volume are given by $W=112$ and $V=$ 109, respectively. It is required to determine the most valuable cargo load in discrete units of each item. Formulate the problem as an integer progran and solve by LINDO.
(Ova stranica je ostavljena prazna)

6. TEORIJA IGARA

6.1. OPŠTI POJMOVI I DEFINICIJE IZ DOMENA MATRIČNIH IGARA

U oblasti operacionih istraživanja postoji značajna klasa upravljačkih zadataka koji su vezani za rešavanje problema donošenja odluka u uslovima nedovoljne definisanosti. Ako je reč o upravljanju nekom operacijom, nedefinisanost se može ogledati kako u uslovima izvođenja operacije tako i u svesnim akcijama protivnika ili drugih učesnika od kojih zavisi ishod operacije. Osim toga, nedefinisanost se može takođe, u manjoj ili većoj meri, odnositi i na ciljeve operacije, čiji se ishod samo ponekad može u potpunosti okarakterisati jednim jedinim parametrom, koji tada nazivamo pokazateljem efikasnosti.

Pr. rešavanju upravljačkih zadataka, u uslovima odsustva potrebnih informacija, neophodno je imati u vidu da će uvelt biti prisutan elemenat neizvesnosti u pogledu ishoda upravljačke akcije. Drugim rečima, biće prisutan određeni rizik, koji možemo izraziti kvantitativno kao neki gubitak.

Matematičke metode kojima se rešavaju ovakvi upravljački zadaci poznate su kao posebne discipline: teorija igara i statističke metode odlučivanja.

U rešavanju niza praktičnih zadataka operacionih istraživanja (u oblasti ekonomije, ratne veštine itd.), susrećemo se sa potrebom analize sitaucije, u kojoj dejstvuju dve (ili više) protivničke strane koje imaju različite ciljeve, pri čemu rezultat bilo kakve akcije nekog od učesnika zavisi od toga kakav će vid dejstva odabrati protivnik. Ovakve situacije u kojima treba donositi upravljačke odluke, nazivaju se konfliktnim situacijama.

Polazeći od definicije konfliktne situacije možemo reći da je teorija igara matematička teorija konfliktnih situacija.

Problemi konflikata su stari toliko koliko je staro i ljudsko društvo. Međutim, teorija igara je mlada matematička disciplina. Njen nastanak je vezan za ime američkog matematičara John von Neumann-a (1903-1957), koji je 1928. godine objavio svoj prvi rad iz teorije igara. Za prvo fundamentalno delo iz teorije igara smatra se knjiga: John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, New York, 1944.

U ovom poglavlju Zbirke zadataka bice razmatrani oni problemi iz teorije konfliktnih situacija gde u konfliktu uCestruju samo dve protivničke strane.

Ako samo jedan protivnik može uticati na ishod događaja, igra se svodi na takozvanu igru jednog lica. Na primer, ako igrac A ima niz alternativa (strategija) $a_{1}, a_{2}, \ldots, a_{m}, t j$.

$$
A=\left(a_{1}, a_{2}, \ldots, a_{m}\right)
$$

sa ishodom (cenom) koji se može proceniti kao dobit koja ce zavisiti od odabrane alternative,

$$
C\left(a_{1}\right), C\left(a_{2}\right), \ldots, C\left(a_{m}\right),
$$

tada se za igrača A može tražiti optimalna alternativa a* u skupu moguçih alternativa A , tako da bude ispunjen uslov

$$
C\left(a^{*}\right) \geqslant C\left(a_{i}\right),
$$

$\mathrm{za} \mathrm{i}=1,2, \ldots, \mathrm{~m}$.
Situacija postaje znatno složenija ako imamo dva igrača koji mogu da utuču na ishod igre.

Skup mogucih alternativa za igrača A je

$$
A=\left(a_{1}, a_{2}, \ldots, a_{m}\right)
$$

dok je skup mogucih alternativa za írrača B,

$$
B=\left(b_{1}, b_{2}, \ldots, b_{n}\right) .
$$

Tada je ishod igre (dobit) funkcija dve promenjive,

$$
C=C\left(a_{i}, b_{j}\right)
$$

Igra odražava sukob interesa i oba protivnika zele da izaberu optimalne strategije sobzirom na cenu igre.

U slučaju kada odluke donosi samo jedno lice, a ishod igre se ne određuje samo izborom jedne alterna!ive od strane donosioca odluke, tada na ishod igre utiče slučajna promenljiva θ, tako da je

$$
C=C(a, \theta) .
$$

Na osnovu izloženog mogu se definisati neki osno ni pojmovi iz teorije igara.
Pojam igre. Pod pojmom igre podrazumevaćemo model realne konfliktne situacije. Pored toga, igri se mogu korespondirati pravila cime se definiše ponašanje učesnika u igri.

Pojam hoda. Hod je izbor jedne od mogucih alternativa (strategija) koje stoje na raspoloženju učesnicima u igri. Sam hod može biti lični ili slučajni. Ličnim hodom nazivamo hod kada učesnik u igri sam svesno izabira svoje ponašanje, dok je pri slučajnom hodu ponašanje učesnika u igri vezano za neki slučajni mehanizam.

Pojam strategije. Prema intuitivnom shvatanju igre, strategija je neki plan razvoja igre. Drugim rečima, pod pojmom strategije podrazumevamo skup pravila koja jednoznačno određuju izbor hoda svakog od učesnika u igri.

Pojam igre sa nultom sumom. Igra se naziva "igrom sa nultom sumom" ako jedan od igrača dobija onoliko koliko drugi gubi, tj. zbir dobiti u igri oba igrača jednak je nuli.

Igre dva lica sa nultom sumom nazivaju se antagonističkim igrama. Normalna forma konačne antagonističke igre svodi se na neku matricu A sa brojem redova jednakim broju strategija 1_{1} grača I i sa brojem kolona jednakim
broju strategija, igrača II. Dobit za igrača I, ako odabere i-tu strategiju, a igrač II odabere j-tu strategiju, definisana je elementom $a_{i j}$, koji se nalazi u i-tom redui j-toj koloni matrice A. Matrica A se naziva matricom koštanja ili platežna matrica igre.

Cilj teorije igara je da se egzaktnim matematičkim aparatom analizira konfliktna situacija i odredi razumno ponašanje igrača u toku konflikta, tj. da se odrede optimalne strategije za svakog od učesnika u igri.

Optimalna strategija. Pod pojmom optimalne strategije igrača podrazumeva se takva strategija koja pri visestrukom ponavljanju igre obezbeđuje tom igraču maksimaino moguci srednji dobitak, odnosno, minimalno moguci srednji gubitak.

Pri izboru optimalne strategije polazi se od cinjenice da je protivnik potpuno razuman i činice sve da nas spreči u ostvarenju cilja. Polazeci od ovoga u teoriji igara se formulişe sledeci princip: igrač bira svoje ponašanje tako da mu dobitak u igri bude maksimalan uz, za njega, najnepovoljnije delovanje protivnika. Ovaj princip, koji diktira svakoj strani izbor svoje najopreznije strategije, računajuci na, za sebe, najnepovoljnije ponašanje protivnika. naziva se principom minimaksa i predstavlja osnovni princip u teoriji igara.

Strategije, koje učesnici u igri biraju na osnovu ovog principa, nazivaju se minimaksnim strategijama

6.2. REŠAVANJE PROSTIH MATRIČNIH IGARA

1. Zadatak

Definicija igre. Posmatramo takvu igru gde svaki igrač, nezavisno od drugos igraČa, može da izabere alternative, kako je pokazano u sledećoj tabeli 1.

Igrači	Alternative		
1	x_{1}	x_{2}	x_{3}
11	y_{1}	y_{2}	y_{3}

Dobit ili funkcija cene igre za igrača I, koja zavisi od izbora mogucih strategija, data je sledecim skupom podataka,

$$
\begin{array}{lll}
C\left(x_{1}, y_{1}\right)=4, & C\left(x_{1}, y_{2}\right)=-1, & C\left(x_{1}, y_{3}\right)=-4, \\
C\left(x_{2}, y_{1}\right)=3, & C\left(x_{2}, y_{2}\right)=2, & C\left(x_{2}, y_{3}\right)=3, \\
C\left(x_{3}, y_{1}\right)=-2, & C\left(x_{3}, y_{2}\right)=0, & C\left(x_{3}, y_{3}\right)=8 .
\end{array}
$$

(*)
Naci rešenje igre, tj. odrediti:
a) optimalni strategijski par ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}$), (koji se još naziva i Borel - von Neumann-ovim strategijskim parom)
b) naci vrednost matrične igre.

Rešenje. Napred definisanu igru možemo svesti na matričnu formu, kako je to prikazano u tabeli 2, .gde redovi odgovaraju mogucim strategijama igrača I a kolone mogućim strategijama igrača If.

Tabela 2.

		Strategija igrača II			minimum po redu
		y_{1}	y_{2}	y_{3}	
	x_{1}	44	${ }^{-5}$	${ }^{-3}-4$	- 4
	X_{2}	23	0	63	2
	X_{3}	-2	${ }^{-3} 0$	${ }^{7} 8$	-2
maximum po koloni		4	2	8	

Analizom matrice cene igre, igrač I utvrđuje da ako odabere strategiju x_{1} minimalno što ce dobiti je -4 , za strategiju x_{2} je 2, a ako odabere strategiju x_{3} minimalna dobit je -2. Igrač I će nastojati da odabere takvu strategiju kojoj odgovara maksimum među utvrđenim minimalnim dobitima. U našem slučaju je to strategija X_{2}. Vrednost dobiti, koja odgovara strategiji x_{2}, naziva se donjom vrednošcu igre i obeležava se sa α. Prema tome, imamo da je

$$
\alpha=\max _{\mathrm{i}} \min _{\mathrm{j}}\left(\mathrm{a}_{\mathrm{ij}}\right)=2
$$

Analizom matrice cene igre, igrač II utvrđuje da ako odabere strategiju y_{1} maksimalno Što može da izgubi je 4, za strategiju y_{2} je 2 , a ako odabere strategiju y_{3} maksimalno şto može da izgubi je 8. Igrač II ce nastojati da odabere takvu strategiju koja odgovara minimumu među utvrđenim maksimalnim gubicima po svakoj koloni. U našem slučaju to je strategija y_{2}. Ovako dobijena vrednost se naziva gomjom vrednošću igre i obeležava se sa β. Prema tome, imamo da je

$$
\beta=\min _{j} \max _{\mathrm{i}}\left(\mathrm{a}_{\mathbf{i j}}\right)=2 .
$$

Ako je gornja vrednost igre jednaka donjoj vrednosti igre za takvu matričnu igru se kaže da ima sedlo, a rešenje igre je u domenu cistih strategija. Drugim rečima, ako oba igrača pronađu bar po jednu strategiju, koja je prema predviđanjima najbolja u odnosu na sve strategije njegovog protivnika kaže se da igra za rešenje ima čiste strategije kao optimalne. Ovo je moguće samo onda ako matriéna igra ima sedlo. U tom slučaju vrednost igre je

$$
v=\alpha=\beta .
$$

U našem slučaju, matrična igra ima sedlo i optimalne strategije su u domenu cistih strategija, to su:

> I igrač - strategija x_{2},
> II igrač - strategija y_{2},
a donja vrodnost igre je jednaka gornjoj vrednosti igre, tj .

$$
v=\alpha=\beta=2
$$

Elemenat $\mathrm{a}_{2_{2}}=2$ naziva se sedlom matrične igre.
Ako igrač I primeni bilo koju drugi strategiju, a ne strategiju x_{2}, a igrač ll ostane pri optimalnoj strategiji, dobit igrača I će biti umanjena. Takođe, ako igrač II primeni bilo koju drugu strategiju a ne y_{2}, a igrač I ostane pri svojoj optimalnoi strategiji, gubitak igrača II ce biti uvećan.

2. Zadatak

$$
\begin{aligned}
& \text { sport } \\
& \text { bro; poena }
\end{aligned}
$$

$$
\begin{aligned}
& \text { kompa } \\
& \text { trgou, }
\end{aligned}
$$

Definicija zadatka. U oružanom sukobu lovačke avijacije i bombardera mogućnosti protivničkih strana definisane su na sledeći način: neka su avioni lovačke avijacije, koji pripadaju strani A (odbrana), prema svom naoružanju podeljeni u četiri grupe a_{1}, a_{2}, a_{3} i a_{4}. Ovi avioni mogu da se upotrebe kao odbrana protiv bombardera koji pripadaju protivničkoj strani B (napadač). Bombarderi mogu odabrati jednu od sledećih varijanti napada: da lete malim brzinama i da vrše neprekidnu paljbu, da lete srednjim brzinama i da vrše povremenu paljbu ili da lete velikim brzinama bez paljbe.

Odbrana želi da odabere lovačke avione sa najefikasnijim naoružanjem, pri čemu joj na raspolaganju stoje četiri strategije, a napadač želi da odabere najpogodniju varijantu napada, pri čemu mu na raspolaganju stoje tri strategije. Pretpostavimo da je cena igre definisana preko dobiti koju ostvaruje odbrana, a koja se izražava verovatnoćama gubitaka jednog bombardera koji koristi određenu varijantu napada i za neki određeni strategijski izbor odbrane. Ove verovatnoce su poznate za sve kombinacije strategija odbrane (A) i napadača (B). Prema tome, igra je u potpunosti definisana matricom igre C, čije ćemo vrste označiti sa $a_{i}(i=$ $1,2,3,4)$, kolone sa $b_{j}(j=1,2,3)$, a elemente matrice C sa $c_{i j}$. Vrednosti elemenata $c_{i j}$ date su u tabeli 1 .
a) Rešiti matričnu igru, tj. odrediti optimalne strategije učesnika u oružanom sukobu i naći vrednost igre.
b) Kake ce uticati na rešenje problema promena verovatnoće c_{33} od vrednosti 0,12 na vrednost 0,09 ? U kom opsegu se može menjati ova verovatnoća a da to ne utiče na prvobitno rešenje problema.

Tabela 1.

B	b_{1} neprekidna paljba, male brzine	b_{2} povremena paljba, sr. brzine	b_{3} bez, paljbe velike brzine	$\alpha_{i}=\min _{j} c_{i j}$
a_{1}	0.25	0.20	0.10	0.10
a_{2}	0.13	0.09	0.111	0.09
a_{3}	0.30	0.17	0.12	0.12
a_{4}	0.16	0.11	0.05	0.05
$\beta_{5}=\max _{i} c_{i j}$	0.30	0.20	0.12	

Rešenje. Polazi se od analize igre sa stanóvišta odbrane. Ako odbrana odabere prvu strategiju, naoružanje a_{1}, cena igre vezana je za prvi red matrice (a_{1}). Pod pretpostavkom da napadač zna za odluku odbrane, on ce izabrati varijantu napada koja mu obezbeđuje minimalan gubitak, tj. minimalnu verovatnoću unistenja aviona-bombardera, a to je let bombardera velikom brzinom bez paljbe (varijanta napada b_{3}). Ova vrednost za odbranu je minimum onoga što može dobiti ako primeni strategiju a_{1}. Ovom paru strategija ($a_{1} b_{3}$) odgovara verovatnoca uništenja bombardera, tj . vrednost igre

$$
\alpha_{1}=c_{13}=\min c_{i j}=0.10 \quad(j=1,2,3)
$$

Ako odbrana odabere lovce sa naoružanjem a_{2}, napadač će se odlučiti za srednje brzine i povremenu paljbu, što odgovara minimumu dobiti za protivničku stranu A (odbrana). Prema tome, imamo da je

$$
\alpha_{2}=\min c_{2 j}=c_{22}=0.09 \quad(j=1,2,3)
$$

Na isti način se može rezonovati i dalje, pri čemu se određuju minimalne dobiti za odbranu i to za svaki red, tj .

$$
\alpha_{i}=\min _{j} c_{i j}
$$

za svako fiksirano $i=1,2,3,4$ i promenljivo $j=1,2,3$.
Ovako dobijene vrednosti igre upisane su u tabeli 1 , kao vektor-kolona. Prema tome, transponovani vektor ovih vrednosti je

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)^{\mathrm{T}}=(0.10 ; 0.09 ; 0.12 ; 0.05)^{\mathrm{T}}
$$

Imajuci u vidu da napadač postupa prema principu opreznosti, tj. garantovanih "dobitaka", odbrana će sa svoje strane nastojati da odabere onu strategiju kojoj odgovara maksimalna verovatnoća uništenja protivnika. Drugim rečima, odbrana nastoji da vrednost igre bude

$$
\alpha=\max _{i} \alpha_{i}=0.12 \quad(i=1,2,3,4)
$$

Dakle, ovu maksimalnu garantovanu dobit odbrana ce ostvariti primenom strategije a_{3}, što odgovara upotrebi lovačke avijacije naoružane vrstom naoružanja a_{3}.

Na sličan nacin ovu matričnu igru možemo analizirati sa stanovišta napadača. Naime, ako napadač odabere varijantu b_{1} (neprekidna pajjba pri malim brzinama), odbrana ce tada odabrati strategiju koja joj obezbeđuje maksimalnu dobit. Drugim reČima, odbrana se, suprotstavlja lovačkom avijacijom naoružanom vrstom naoružanja a_{3}, pri cemu če verovatnoća uništenja protivnika biti najveça. Pri tome, vrednost igre za ove strategijske izbore je

$$
\beta_{1}=\max c_{11}=c_{31}=0.30(i=1,2,3,4)
$$

Rezonujuci na isti način, mogu se dobiti i ostali parovi strategja, koji odgoviraju makesmumima kolona. Ovi maksimumi so araCunavaju prema izrazu

$$
\beta_{j}=\max _{i} c_{i j},
$$

za svako fikdrano $j=1,2,3,4 i$ promenijivo $i=1,2,3,4$.
Ovako dobijene vrednosti gre upiane su u tabeli 1 keo vektor red

$$
\left(\beta_{1}, \beta_{2}, \beta_{3}\right)=(0.30 ; 0.20 ; 0.12) .
$$

Imajuci u vidu da odbrana postupa prema principu opreznosti, tj. garantovanih dobitaka, napadae te ma svoje strane nartojati da odebere onu varijantu napada kojoj odgovara minimalma verovatnoća gubitaka. Drugim rečam, napadać nastoji da vrednost igre bude

$$
\beta=\min _{\mathrm{j}} \beta_{j}=0.12 .
$$

Vrednost za β naziva segornjom vrednoicu tipe. a vrednost $2 a \alpha$ naziva so donjom viednoicu ligre.

Kako je u ovom succaju

$$
\alpha=\max _{i} \alpha_{i}=\beta=\min _{j} \beta_{j}=0.12,
$$

to znači da su gornja i donja vrednost igre jednake i prema Borel-von-Nojmanovom kriterijumu igra ima sedlastu tačku $c_{33}=0.12$, kojoj odgovara par cistih optimalnih strategija ($\mathrm{a}_{3}^{*}, \mathrm{~b}_{3}^{*}$). Na osnovu ovoga proizilazi da odbrana treba upotrebiti lovce sa naoružanjem a_{3}, a bombarderi napadača treba da lete velikim brzinama bez paljbe. Vrednost igre je

$$
\alpha=\beta=V=0.12 .
$$

Resenje zadatka pod b) Promena elementa matrice c_{33} možc uticati i na rešenje matrične igre. Ako etemenat c_{3} ima vrednost 0.09 , u ovom slučaju donja vrednost igre je

$$
\alpha=\max _{i} \min _{j} c_{i j}=0.10,
$$

a gornja vrednost igre je

$$
\beta=\min _{j} \max _{i} c_{i j}=0.11
$$

Prema tome, imamo da su gornja i donja vrednost igre razlicite, sto znaci da Ce vrednost igre ležati u granicama

$$
\alpha<V<\beta,
$$

U ovom sučaju resenje igre nalazi se u domenu meŠovitih strategija, $\mathfrak{t j}$. optimalne strategije bice takve da ce igraci (protivnicke strane) morati da biraju svoje ciste strategije sa odredenim verovatnocama.

Stabilnost proobitnog optimalnog rešenja u kome igraci imaju ciste optimalne strategije zavisi od elemenata matrice cene igre i to u koloni i redu koji odgovaraju optimalnim strategijama. U našem slučaju resenje igre ce ostati nepromenjeno ako vrednost elemenata ${ }_{123} \mathrm{C}_{3}$ leži u granicama

$$
0.11 \leqslant c_{33} \leqslant 0.17,
$$

tj. mora biti veći ili najmanje jednak najvećem elementu u koloni, a manji ili najviše jednak najmanjem elementu ù svome redu.

3. Zadatak

Definicija zadatka. Brigada radnika koja radi na elektrocentrali, koja će biti završena sledećeg proleća, stanuje u radničkom naselju nedaleko od gradilišta. Sredinom jeseni razmatra se problem nabavke uglja za zagrevanje naselja. Zavisno od toga kakva ce biti nastupajuća zima, potrebe za ugljem biće različite. Ukoliko zima bude normalna trebaće 150 tona uglja, za blagu zimu - 120 tona, a za oštru zimu trebaće 180 tona uglja. Pošto se radnici sledećeg proleća sele na novo gradilište, višak uglja, koji ostane posle zime, neće biti moguće iskoristiti. Ako se ugalj nabavlja sredinom jeseni njegova cena će biti 100 novčanih jedinica po toni. Zavisno od toga da li ce zima biti blaga, normalna ili oštra, tona uglja koja se bude nabavljala po zimi koštace 100,120 ili 140 novčanih jedinica po toni.

Sredinom jeseni, u vezi nabavke uglja za predstojecu zimu, pred upravom naselja stoje tri moguće strategije, tj. mogu nabaviti $120 \mathrm{t}, 150 \mathrm{t}$, ili 180 t a preostalu kolicinu nabaviće u toku zime ukoliko bude potrebno.
a) Problem izbora optimalne strategije formulisati kao matričnu igru i formirati matricu cene igre.
b) Naci rešenje matrične igre, tj . odrediti optimalne strategije i vrednost matrične igre.
c) Ispitati stabilnost optimalnog rešenja igre.

Rešenje. Izbor strategije obezbeđenja ogreva posmatramo kao problem konflikta, pri čemu se rešavanje poblema izbora strategije obezbeđenja ogreva svodi na rešavanje matrične igre. Učesnici u igri su, sa jedne strane - uprava naselja, a sa druge strane priroda. Ovakve matrične igre nazivaju se i igrama protiv prirode.
a) Matrica cene igre može se formirati tako sto ce se izračunati troškovi uprave gradilista u zavisnosti od "strategije" prirode i odabrane strategije obezbeđenja ogreva. Iz postavke zadatka proizilazi da prirode može odabrati sledece "strategije":

1) blaga zima sa cenom uglja u toku zime od 100 novčani jedinica po toni
2) normalna zima sa cenom uglja u toku zime od 120 novčanih jedinica po toni i
3) Oštra zima sa cenom uglja u toku zime od 140 novčanih jedinica po toni.

Ovi troškovi sračunati su za sve kombinacije strategija, a rezultati su prikazani u tabeli 1 .

Vrednosti cena plaćanja u prvom redu tabele 1 sračunate su na sledeci način. Polazi se od toga da je uprava gradilišta sredinom jeseni nabavila 120 tona uglja kada je cena uglja po toni 100 novčanih jedinica. Ako zima bude blaga uprava gradilisita imace ukupne troskove ogreva $120 \mathrm{t} \times 100 \mathrm{n} . \mathrm{j} . / \mathrm{t}=12.000 \mathrm{n} . \mathrm{j}$. Ovako sračunata vrednost sa promenjenim znakom uzima se da je jednaka koeficijentu c_{11}. Prema tome, imamo da je

$$
c_{11}=-12.000,
$$

a ostali elementi su,

$$
\begin{aligned}
& c_{12}=-120 t \times 100 \mathrm{n} . \mathrm{j} . / \mathrm{t}-30 \mathrm{t} \times 120 \mathrm{n} . \mathrm{j} . / \mathrm{t}=-15.600, \\
& c_{13}=-120 \mathrm{t} \times 100 \mathrm{n} . \mathrm{j} . / \mathrm{t}-60 \mathrm{t} \times 140 \mathrm{n} . \mathrm{j} . / \mathrm{t}=-20.400 .
\end{aligned}
$$

Tabela 1.

Prıroda	Blaga zima cena uglja 100 din. $/ t$	Normalna zima, cena uglja 120 din./t.	Jaka zima, cene uglja 140 din. $/ t$	Minimum po redu
Uprava gradilišta	-12.000	-15.600	-20.400	20.400
120 tona	-15.000	-15.000	-19.200	-19.200
150 tona	-18.000	-18.000	-18.000	-18.000
180 tona	-12.000	-15.000	-18.000	
Maximum po koloni				

Vrednosti elemenata matrice plaćanja u drugom redu tabele 1 sračunati su na sledeci način,

$$
\begin{aligned}
& \mathrm{c}_{21}=-150 \mathrm{t} \times 100 \mathrm{n} . \mathrm{j} / \mathrm{t}=-15.000 \\
& \mathrm{c}_{22}=-150 \mathrm{t} \times 100 \mathrm{n} . \mathrm{j} / \mathrm{t}=-15.000 \\
& \mathrm{c}_{23}=-150 \mathrm{t} \times 100 \mathrm{n} . \mathrm{j} / \mathrm{t}-30 \mathrm{t} \times 140 \mathrm{n} . \mathrm{j} / / \mathrm{t}=-19.200
\end{aligned}
$$

Elementi u trecem redu tabele 1 imaju svi iste vrednosti, tj.

$$
c_{31}=c_{32}=c_{33}=-180 \mathrm{t} \times 100 \mathrm{n} . \mathrm{j} . / \mathrm{t}=-18.000
$$

b) Rešenje matrix̌ne igre treba tražiti pre svegau domenu čistih strategija. Prema tome, treba izračunati donju vrednost igre, za koju imamo da je

$$
\alpha=\max \alpha_{i}=\max (-20.400 ;-19.200 ;-18.000)=-18.000
$$

dok je gornja vrednost igre

$$
\beta=\min _{j} \beta_{j}=\min _{j}(-12.000 ;-15.000 ;-18.000)=-18.000 .
$$

Kako je $\alpha=\beta$ matrična igra ima sedlo, a vrednost matrične igre (V) je

$$
V=\alpha=\beta
$$

Resenje igre se nalazi u domenu čistih strategija. Čiste optimalne strategije odgovaraju elementu c ${ }_{3} 3$ koji predstavlja sedlo ove matrične igre: Prema tome, za upravu gradilista optimalna strategija je da sredinom jeseni obezbedi 180 tona uglja.
c) Stabilnost optimalnog rešenja merena promenom elemenata c_{33}, pri nepromenljivosti ostalih elemenata matrice cene igre, može se izraziti opsegom
promena elementa c_{33} za koje optimalno rešenje ostaje nepromenjeno. U ovom slučaju taj opseg je

$$
-19.200 \leqslant c_{33} \leqslant-15.000
$$

4. Zedatak

Definicija zadatka. Konfliktna situacija predstavlja oružani sukob dveju protivničkih strana "Crvenih" i "Plavih". Za nanošenje udara po protivniku "Crveni" raspolazze sa cetiri tipa oružja: $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$ i K_{4}. U cilju smanjenja efikasnosti primene oružja od strane "Crvenih", "Plavi" mogu da primene četiri tipa sredstava za elektronsko ometanje: $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ i E_{4}. Efikasnost oružja "Crvenih" izražava se kao procenat uništenja tučenog cilja. Kako preciznost gadanja zavisi od efikasnosti elektronskih sredstava ometanja, to ce ovi procenti biti različiti za razlicite strategijske izbore protivničkih strana.

Matrica cene igre data je u Tabeli 1. Potrebno je:
a) naci optimalne strategije protivnič kih strana;
b) izračunati vrednost igre i objasniti značenje te vrednosti

,.Plavi"	E_{1}	E_{2}	E_{3}	E_{4}
${ }^{\text {MCrveni" }}$				
K_{1}	60	60	60	70
K_{2}	90	50	40	80
K_{3}	80	70	60	90
K_{4}	70	30	50	70

Resenje. Da bi odredili domen u kome se nalazi rešenje matrične igre, pri cemu se misli na domen čistih strategija i domen mešovitih strategija, potrebno je pronaol donju i gornju vrednost igre.

Ako sa α označimo donju vrednost igre, tada je

$$
\alpha=\max \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \ldots, \alpha_{m}\right)
$$

gde je

$$
\alpha_{i}=\min _{j} c_{i j}
$$

a $c_{\text {ij }}$ odgovarajuci elemenat iz tabele 1.
Prema tome, iz tabele 1 imamo da je:

$$
\begin{aligned}
& \alpha_{1}=\min (60,60,60,70)=60, \\
& \alpha_{2}=\min (90,50,40,80)=40,
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{3}=\min (80,70,60,90)=60 \\
& \alpha_{4}=\min (70,30,50,70)=30
\end{aligned}
$$

Otuda, za donju vrednost matrične igre, dobija se da je

$$
\alpha=\max (60,40,60,30)=60 .
$$

Ako sa β oznacimo gornju vrednost matrične igre, tada je

$$
\beta=\min \left(\beta_{1}, \beta_{2}, \ldots, \beta_{j}, \ldots, \beta_{n}\right),
$$

gde je

$$
\beta_{\mathrm{j}}=\max c_{\mathrm{ij}}
$$

Prema tome, iz tabele 1 imamo da je:

$$
\begin{aligned}
& \beta_{1}=\max (60,90,80,70)=90, \\
& \beta_{2}=\max (60,50,70,30)=70, \\
& \beta_{3}=\max (60,40,60,50)=60 . \\
& \beta_{4}=\max (70,80,90,70)=90 .
\end{aligned}
$$

na osnovu と̌ega, za gornju vrednost matrǐ̌ne igre, dobijamo da je

$$
\beta=\min (90,70,60,70)=60 .
$$

Kako je $\alpha=\beta=60$, to znači da igra ima sedlo i da se rešenje igre nalazi u domenu cistih strategija.

U ovom slučaju igra ima dva sedla. Tačke sedla su c_{13} i c_{33}. Prema tome, "Crveni" ima dve optimalne čiste strategije K_{1} i K_{3}, dok 'Plavi" ima optımalnu čistu strategiju E_{3}.

Tačke sedla nalaze se na preseku ovih optimalnih strategija.
Vrednost igre je

$$
V=\alpha=\beta=60
$$

Şto znači, da bez obzira na strategijski izbor "Plavog", ako "Crveni" primeni optimalne strategije K_{1} ili K_{3} postici će uništenje cilja sa 60 procenata. Međutim, ako protivnik ne primeni svoju optimalnu strategiju taj procenat ce biti još veći.

5. Zadaci za vežbu

1. Naci rešenje matričnih igara ako je dobit igrača I u odnosu na igrača II definisana matricom cene.
a)

Igrac II Igrą I	B_{1}	B_{2}	B_{3}	B_{4}
A_{1}	3	1	5	6
A_{2}	0	-1	1	3
A_{3}	-3	-5	1	0

b)

Igrač I Igrač II	B_{1}	B_{2}	B_{3}	B_{4}
A_{1}	2	9	3	5
A_{2}	7	6	5	8
A_{3}	2	3	4	7
A_{4}	5	6	5	6

c)

Igrač I Igrač II	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	-1	-1	3	-1
$\mathrm{~A}_{2}$	2	-2	-1	-1
$\mathrm{~A}_{3}$	-1	-1	2	5

Rešenja problema nalaze se u domenu čistih strategija. Optimalne strategije su: a) $S_{o p}=\left\{\left(A_{1}, B_{2}\right) ;\right.$ b) $S_{o p}=\left\{\left(A_{2}, B_{3}\right)\right.$ ili $\left.\left.\left(A_{4}, B_{3}\right)\right\} ; c\right) S_{o p}=\left\{\left(A_{1}, B_{2}\right)\right.$ ili $\left.\left(A_{3}, B_{2}\right)\right\}$.
2. Pokazati da matrična ìgra definisana matricom $A=\left\|a_{i j}\right\|$, čije su dimenzije nxm, ima rešenje u domenu čistih strategija ako je $a_{i j}=i-j$. Pokazati da će vrednost igre bitī $V=a_{n m}$.

6.3. REŠAVANJE MEŠOVITIH MATRIČNIH IGARA

Resiti matričnu igru znači odrediti optimalne strategije koje obezbeđuju najbolji očekivani ishod igre, pod uslovom da se te strategije sistematski primenjuju u toku igre.

Optimalna strategija može biti čista strategija (matrične igre sa sedlom) ili mešovita strategija. Čistih strategija ima onoliko koliko igrač ima alternativa ponašanja u igri.

Moguénosti izbora meŠovitih strategija su daleko vecé. Ukoliko je veći broj cistih strategija to su i ove moguénosti veće. Za dve čiste strategije u igri, ako igrač želi da primenjuje mešovite strategije, on će se nekom verovatnocom p_{1} koristiti jednu cistu strategiju ili sa verovatnocom $1-\mathrm{p}_{1}$ drugu čistu strategiju. Njegove moguenosti, u ovom slučaju, su ograničene na vrednosti verovatnoće $p_{1} u$ intervalu od 0 do 1 .

U opštem slučaju, rě̌iti matričnu igru znači odrediti:
a) vektor mešovite strategije za igrača I,

$$
\begin{aligned}
& P=\left(p_{1}, p_{2}, \ldots, p_{j}, \ldots, p_{n}\right), \text { gde je } \\
& p_{1}+p_{2}+\ldots+p_{j}+\ldots+p_{n}=1 ;
\end{aligned}
$$

b) vektor mešovite strategije za igrača II,

$$
\begin{aligned}
& Q=\left(q_{1}, q_{2}, \ldots, q_{i}, \ldots q_{m}\right), \text { gde je } \\
& q_{1}+q_{2}+\ldots+q_{j}+\ldots+q_{m}=1 ; i
\end{aligned}
$$

c) vrednost matrične igre koja je definisana sledecim izrazom

$$
C(P, Q)=\sum_{j=1}^{n} \sum_{j=1}^{m} a_{i j} p_{i} q_{j}, \text { gde su }
$$

p_{1} - verovatnoća izbora i-te Ciste strategije igrača I;
q_{j} - verovatnoća izbora j-te ciste strategije igrača II;
a_{ij} - dobit u igri igrača I u odnosu na igrača II za strategijski par (i, j).

6.3.1. Rešavanje matričnih igata 2×2

Za matrične igre kod kojih svakom od igrača stoje na raspolaganju samo po dve čiste strategije kažemo da spadaju u grupu matričnih igara čija je matrica cene dimenzija 2×2. Ako ovakva matrična igra nema sedlo tada je reßenje matriěne igre u domenu mesovitih strategija, $t j$. verovatnoce p_{1}, p_{2}, q_{1} i q_{2} su vece od nule. Postupak rešavanja ovih matričnih igara ilustrovan je sledecim primerima:
6. Zadatak Unekoj sportskoj igri

Definicija zadatka. U konfliktnoj situaciji uucestruju dve protivnicke strane.
 aviona ${ }^{3 a} \mathrm{~B}_{1}{ }_{1} \mathrm{P}_{1} \mathrm{~B}_{2}$. Cilj protivničke strane A je da odabere takvo oružje koje je efikasnije u odnosu na upotrebljeni avion. Međutim, protivnik nastoji da smanji verovatnocu pogađanja izborom pogodnijeg aviona.

Verovatnoće za sve kombinacije strategija protivničkih strana date su u tabeli 1, koja predstavlja matricu sene igre, tako da je konfliktna situacja definieana kao antagonistička igra.

Tabela 1

	B_{1}	B_{2}
A_{1}	0,4	0,2
A_{2}	0,2	0,6

a) Naci gornju i donju vrednost matrične igre.
b) Odrediti optimalne strategije i vrednost igre.

Rešenje

a) Donja vrednost igre definisana je izrazom

$$
\alpha=\max \min \mathrm{a}_{\mathrm{ij}},
$$

gde su a_{ij} elementi matrice cene, koji su dati u tabeli 1 .
Prema tome, imamo da je

$$
\begin{aligned}
& \alpha_{1}=\min (0,4 ; 0,2)=0,2, \\
& \alpha_{2}=\min (0,2 ; 0,6)=0,2 .
\end{aligned}
$$

Otuda je

$$
\begin{gathered}
\alpha=\max \left(\alpha_{1} ; \alpha_{2}\right)=\max (0,2 ; 0,2)=0,2 \\
\alpha=0,2 .
\end{gathered}
$$

Gornja vrednost igre definisana je izrazom

$$
\beta=\min _{\mathrm{j}} \max _{\mathrm{i}} \mathrm{a}_{\mathrm{ij}}
$$

Prema tome, za date brojne vrednosti imamo da je:

$$
\begin{aligned}
& \beta_{1}=\max (0,4 ; 0,2)=0,4 \\
& \beta_{2}=\max (0,2 ; 0,6)=0,6, \\
& \text { i } \quad \beta=\min \left(\beta_{1} ; \beta_{2}\right)=\min (0,4 ; 0 ; 6)=0,4 \\
& \beta=0,4 .
\end{aligned}
$$

Kako je $\alpha \neq \beta$ matrična igra nema sedlo i optimalne strategije igrača nalaze se u domenu mešovitih strategija.
b) Vektor mešovite strategije protivničke strane A je

$$
P=\left(p_{1}, p_{2}\right), \text { gde je } p_{1}+p_{2}=1,
$$

Što znači da će protivnička strana A odabirati strategijsku mogućnost A_{1} sa verovatnoćom p_{1} a strategijski izbor A_{2} sa verovatnocom p_{2}.

Vektor mešovite strategije protivničke strane B je

$$
Q=\left(q_{1}, q_{2}\right), \text { gde je } q_{1}+q_{2}=1
$$

Vrednost matricne igre je definisana sledecim izrazom

$$
C(P, Q)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j} p_{i} q_{j}
$$

Za dati brojni primer imamo da je

$$
C(P, Q)=0,4 p_{1} q_{1}+0,2 p_{1} q_{2}+0,2 p_{2} q_{1}+0,6 p_{2} q_{2}
$$

ili možemo pisati da je

$$
C(P, Q)=p_{1} \overbrace{\left(0,4 q_{1}+0,2 q_{2}\right)}^{e}+p_{2} \overbrace{\left(0,2 q_{1}+0,6 q_{2}\right)}^{e} .
$$

Ako je rešenje igre za igrača B u domenu mešovitih strategija, tj. ako su verovatnoce q_{1} i q_{2} vece od nule i ispunjavaju uslov meŠovitih strategija igrača B, da je $q_{1}+q_{2}=1$. tada su u važnosti sledece jednakosti:

$$
\begin{aligned}
& C(P, Q)=0,4 q_{1}+0,2 q_{2} \\
& C(P, Q)=0,2 q_{1}+0,6 q_{2} .
\end{aligned}
$$

Ovome se dodaje da je $q_{1}+q_{2}=1$, pri Cemu se dobijaju tri jednacine sa tri nepoznate, čije je reLenje

$$
q_{1}=\frac{2}{3} ; q_{2}=\frac{1}{3} i C(P, Q)=\frac{1}{3} .
$$

Ako izraz za $C(P, Q)$ uradimo po verovatnocama q_{1} i q_{2}, dobija se

$$
C(P, Q)=q_{1}\left(0,4 p_{1}+0,2 p_{2}\right)+q_{2}\left(0,2 p_{1}+0,6 p_{2}\right)
$$

Ako je rešenje igre za igraça $\mathbf{A} u$ domenu mełovitih strategija, tj. ako su verovatnoce p_{1} i p_{2} vece od nule i ispunjavaju uslov za meక̆ovite atrategije igrača A, da je $p_{1}+p_{2}=1$, tada su u vännosti sledece jednakosti:

$$
\begin{aligned}
& C(P, Q)=0,4 p_{1}+0,2 p_{2}, \\
& C(P, Q)=0,2 p_{1}+0,6 p_{2}
\end{aligned}
$$

i kako je $\mathrm{p}_{1}+\mathrm{p}_{2}=1$, dobijaju se sledeća rešenja za $\mathrm{p}_{1}, \mathrm{p}_{2} \mathrm{i} C(P, Q)$.

$$
p_{1}=\frac{2}{3} ; p_{2}=\frac{1}{3} ; C(P, Q)=\frac{1}{6} \cdot \frac{1}{3}
$$

Dakle, optimalne strategije su

$$
\mathrm{P}=\left(\frac{2}{3}, \frac{1}{3}\right), \mathrm{Q}=\left(\frac{2}{3}, \frac{1}{3}\right),
$$

a vrednost igre je

$$
C(P, Q)=\frac{1}{3} .
$$

7. Zadatak

Ako je matrična igra definisana matricom 2×2, pokazati da se komponente vektora mešovitih strategija mogu sračunati na osnovu sledećih opštih izraza za komponente vektora i vrednost matrične igre.

	B	B_{1}	B_{2}
A_{1}	p_{1}	q_{1}	
A_{2}	a_{11}	a_{12}	
	p_{2}	a_{21}	a_{22}

$$
\begin{aligned}
& p_{1}=\frac{a_{22}-a_{21}}{a_{11}+a_{22}-\left(a_{12}+a_{21}\right)} ; p_{2}=1-p_{1} \\
& C(P, Q)=a_{11} p_{1}+a_{21} p_{2} ;
\end{aligned}
$$

$$
q_{1}=\frac{C(P, Q)-a_{12}}{a_{11}-a_{12}}, q_{2}=1-q_{1}
$$

8. Zadatak

Definicija zadatka. Dva preduzeća koja dele jedno tržište mogu reklamirati svoje proizvode preko TV i preko novina. Svakog meseca organi upravljanja preduzeca donose odluku o svom budžetu za reklamu. Pretpostavimo da su organi upravljanja preduzeća A preko svojih stručnih službi uspeli da odrede:

1. da, ako u jednom mesecu njihovo preduzeće reklamira posmatrani proizvod samo na TV, oni ce imati dodatnu dobit od:
a) 100 novčanih jedinica, ako se konkurentsko preduzece B odluči na istu strategiju, i
b) 0 novčanih jedinica, ako se preduzeće B odluči na strategiju reklamiranja preko novina.
2. da, ako reklamiraju svoj proizvod samo preko novina:
a) izgubiće 100 novčanih jedinica, ako preduzeće B reklamira svoj proizvod preko TV, a
b) zaradiće 200 novčanih jedinica, ako se preduzeće B odluči na reklamu preko novina.

Potrebno je:

1) Formirati matricu cene igre; i
2) Naći rešenje matrične igre.

Resenje

Matrica cene može biti prikazana na sledeći način

II pred.	N	rV
N	200	-100
TV	0	100

Vektor mešovite strategije za preduzeće II dobijamo rešavanjem sledećeg sistema jednačina

$$
\begin{aligned}
& 100 q_{1}+0 q_{2}=V \\
& -100 q_{1}+200 q_{2}=V \\
& q_{1}+q_{2}=1
\end{aligned}
$$

odakle proizilazi da je

$$
\begin{aligned}
& \mathrm{q}_{1}=\frac{1}{2} ; \mathrm{q}_{2}=\frac{1}{2}, \mathrm{tj} . \mathrm{Q}=\left(\frac{1}{2} ; \frac{1}{2}\right) \mathrm{i} \\
& \mathrm{C}(\mathrm{P}, \mathrm{Q})=\mathrm{V}=50 .
\end{aligned}
$$

Vektor mešovite strategije za igrača I određuje se na sličan način rešavajući sistem jednacina:

$$
\begin{gathered}
100 \mathrm{p}_{1}-100 \mathrm{p}_{2}=\mathrm{V} \\
200 \mathrm{p}_{2}=\mathrm{V} \\
\mathrm{p}_{1}+\mathrm{p}_{2}=1
\end{gathered}
$$

odakle je

$$
\mathrm{p}_{1}=\frac{3}{4} ; \mathrm{p}_{2}=\frac{1}{4} ; \mathrm{tj} . \mathrm{P}=\left(\frac{3}{4} ; \frac{1}{4}\right) .
$$

9. Zadatak

Definicija zadatka. Matrična igra 2×2 definisana je matricom cene u kojoj elementi predstavljaju dobit igrača I u odnosu na igrača II.

	11	B_{1}
A_{2}	-1	2
A_{2}	3	1

Dati grafičku interpretaciju matrične igre i naći njeno rešenje.
Resenje. Pošto ovmatrična igra nema sedlo rešenje problema se nalazi u domenu mešovitih strategija.

Vektor mešovite strategije za igrača $I, P=\left(p_{1}, p_{2}\right)$, određuje se preko očekivanih dobiti

$$
\begin{aligned}
& \mathrm{C}\left(\mathrm{P}, \mathrm{~B}_{1}\right)=-\mathrm{p}_{1}+3 \mathrm{p}_{2} ; \\
& \mathrm{C}\left(\mathrm{P}, \mathrm{~B}_{2}\right)=2 \mathrm{p}_{1}+\mathrm{p}_{2} .
\end{aligned}
$$

Kake je $\mathrm{p}_{1}+\mathrm{p}_{2}=1$ to se gornji izrazı mogu pisati u sledecem obliku

$$
\begin{aligned}
& C\left(P, B_{1}\right)=4 \mathrm{p}_{2}-1 \\
& C\left(P, B_{2}\right)=2-p_{2}
\end{aligned}
$$

Igrač I birace vektor mešovite strategije P tako da ocekivane dobiti $C\left(P, B_{1}\right)$ iC ($\mathrm{P}, \mathrm{B}_{2}$) bưdu vece ili najmanje jednake vrednosti matrične igre.

Ako očekivane dobiti predstavimo graficki, dobija se sledeci dijagram (slika 1) promene minimalne ocekivane dobiti u zavisnosti od verovatnoce p_{2}.

Za igrača I odredivanje optimalne mesovite strategije p^{*} sastoji se u iznalaženju veovatnoce p_{2}, koja ce omoguciti najvecu minimalnu dobit. Ako to analitički izrazimo, znači da ce igrač I ispitivati funkciju $f\left(p_{2}\right)$ definisanu izrazom

$$
f\left(p_{2}\right)=\min _{134}\left\{4 p_{2}-1 ; 2-p_{2}\right\} .
$$

Ova funkcija definisana je u intervalu $0<p_{2}<1$ i njoj na grafikonu odgovara izlomljena linija MNR.

Optimalna verovatnoca p_{2} * određuje se na osnovu izraza

$$
f\left(p_{2}^{*}\right)=\max _{p_{2}} f\left(p_{2}\right)=v,
$$

Slika 1.
gde je v vrednost matrične igre. Vrednosti za viipzodređujemo iznalaženjenz koordinata tačke preseka N duži $A R$ i $B M, t j$.

$$
\begin{aligned}
& 4 \mathrm{p}_{2}^{*}-1=2-\mathrm{p}_{2}^{*} \\
& \quad \mathrm{p}_{2}^{*}=\frac{3}{5} ; \mathrm{p}_{1}^{*}=1-\mathrm{p}_{2}^{*}=\frac{2}{5}
\end{aligned}
$$

Ovim je određen vektor mešovite strategije igrača I

$$
\mathrm{P}^{*}=\left(\frac{2}{5} ; \frac{3}{5}\right)
$$

i vrednost matrične igre

$$
\mathrm{C}\left(\mathrm{P}^{*}, \mathrm{Q}^{*}\right)=\mathrm{v}=\frac{7}{5}
$$

Vektor mešovite strategije za igrača II, Q*, može se odrediti na sličan način - grafički ili pak rešavajući sistem jednačina

$$
\begin{aligned}
-\mathrm{q}_{1}+2 \mathrm{q}_{2} & =\mathrm{v} \\
3 \mathrm{q}_{1}+\mathrm{q}_{2} & =\mathrm{v} \\
\mathrm{q}_{1}+\mathrm{q}_{2} & =1
\end{aligned}
$$

Rešenje ovog sistema jednačina je

$$
\mathrm{q}_{1}=\frac{1}{5} \quad \text { i } \quad \mathrm{q}_{2}=\frac{4}{5} .
$$

Prema tome rešenje ove matrične igre je \dot{j}_{5}

$$
\begin{aligned}
& \mathrm{P}=\left(\frac{2}{5} ; \frac{3}{5}\right) ; \mathrm{Q}=\left(\frac{1}{5} ; \frac{4}{5}\right) \mathrm{i} \\
& \mathrm{C}(\mathrm{P}, \mathrm{Q})=\frac{7}{5} .
\end{aligned}
$$

10 Zadatak

Definicija zadatka. Dati grafičku ilustraciju matričnih igara i naći njihova rešenja.

	B	B_{1}
A_{1}	0	5
A_{2}	1	8

	B	B_{1}
A_{1}	2	3
A_{2}	7	1

	B	B_{1}
	B_{2}	
A_{1}	4	2
A_{2}	1	3

Resenje:

a) $P=\left(\frac{9}{14} ; \frac{5}{14}\right)$
b) $P=(0,85 ; 0,15)$
c) $P=\left(\frac{1}{4} ; \frac{3}{4}\right)$
$Q=\left(\frac{13}{14} ; \frac{1}{14}\right)$
$Q=(0,3 ; 0,7)$
$Q=\left(\frac{5}{8} ; \frac{3}{8}\right)$
$C(P, Q)=-\frac{5}{14}$
$C(P, Q)=2,7$
$C(P, Q)=\frac{7}{4}$.

6.3.2. Rešavanje matričnih igara n $\times 2$

Matrične igre kod kojih igraču I stoji na raspolaganju n čistih strategija a igraču II samo dve mogu se rešavati grafički svođenjem na matricu dimenzija 2 x 2.

Postupak rešavanja ovih matričnih igara ilustrovan je sledećim primerima.

11. Zadatak

Definicija zadatka. Konačna antagonistička igra definisana je matricom cene

	B	B_{1}
	B_{2}	
A_{1}	10	-4
A_{2}	5	7
A_{3}	-5	13

gde elementi matrice cene definišu dobit učesnika u igri A u odnosu na učesnika B.

Odrediti optimalne strategije igrača i vrednost matrične igre.
Rešenje. Rešenje igre nalazi se u domenu mešovitih strategija, a vrednost igre u granicama

$$
\alpha=5 \leqslant v \leqslant \beta=10 .
$$

U ovakvim slǔ̌ajevima neophodno je prvo odrediti vektor optimalne strategije za igrača B. U tom cilju definišu se očekivani gubici za igrača B za svaki moguci izbor čiste strategije igrača A. Tako imamo da je

$$
\begin{aligned}
& C\left(A_{1}, Q\right)=10 q_{1}-4 q_{2} \\
& C\left(A_{2}, Q\right)=5 q_{1}+7 q_{2} \\
& C\left(A_{3}, Q\right)=-5 q_{1}+13 q_{2} .
\end{aligned}
$$

Imajuci u vidu da je $q_{i}+q_{2}=1$, ovaj sistem jednacina se svodi na sledece

$$
\begin{aligned}
& C\left(A_{1}, Q\right)=14 q_{1}-4 \\
& C\left(A_{2}, Q\right)=7-2 q_{1} \\
& C\left(A_{3}, Q\right)=13-18 q_{1} .
\end{aligned}
$$

Graficki prikaz ovog sistema jednačina dat je na slici 1.
Igrac B nastojace da odabere verovatnocu q_{1} tako da minimizira maksimalne moguce gubitke, tj . da ne dozvoli da njegovi gubici budu veci od vrednosti igre. Otuda igrač B ispituje funkciju $f\left(q_{1}\right)$, koja je definisana izrazom

$$
f\left(q_{1}\right)=\max \left\{14 q_{1}-4 ; 7-2 q_{1} ; 13-18 q_{1}\right\}
$$

Prema tome, optimalna vrednost \mathbf{q}_{1}^{*} određuje se na osnovu izraza

$$
f\left(q_{1}^{*}\right)=\min _{q_{1}}\left\{f\left(q_{1}\right)\right\}
$$

Iz grafickog prikaza se vidi da su $\mathrm{q}_{1}{ }^{*}$ if $\left(\mathrm{q}_{1}{ }^{*}\right)$ koordinate tačke preseka pravih

$$
\begin{aligned}
& C\left(A_{1}, Q\right)=14 q_{1}-4 \\
& C\left(A_{2}, Q\right)=7-2 q_{1} .
\end{aligned}
$$

Retavanjem ovog sixtema jednačina dobjja so da jo

$$
\begin{aligned}
& q_{i}^{*}=\frac{11}{16} i q_{2}^{*}=\frac{5}{16}, 2 \\
& f_{i}^{*}\left(q_{i}^{*}\right)=\frac{45}{8}=v .
\end{aligned}
$$

Polazeci od ovoga mogu se sračunati ozekivani gubici

$$
\begin{aligned}
& C\left(A_{1}, Q\right)=\frac{45}{8} \\
& C\left(A_{2}, Q\right)=\frac{45}{8} \\
& C\left(A_{3}, Q\right)=\frac{5}{8}
\end{aligned}
$$

Imajuci u vidu opåti izraz za vrodnost matrične igre može we pisati da je

$$
\begin{aligned}
& v=C(P, Q)=\sum_{i=1}^{3} C\left(A_{i}, Q\right) p_{1}, \\
& C(P, Q)=\frac{45}{8} \cdot p_{1}+\frac{45}{8} \cdot p_{2}+\frac{5}{8} \cdot p_{3},
\end{aligned}
$$

a kako jo $p_{1}+p_{2}+p_{3}=1$, to se može piuati da je

$$
C(P, Q)=\frac{45}{8} p_{1}+\frac{45}{8}\left(1-p_{1}-p_{3}\right)+\frac{5}{8} p_{3}=\frac{45}{8}-\frac{40}{8} p_{3}
$$

Igrač A ce nastojati da odabere vektor mešovite strategije tako da njegov dobitak u igri ne bude manji od vrednosti igre, tj. sledi da je $p_{3}=0$. Za_{a} igrača I tra se svodi na matricu cene

	B	B_{1}
A	B_{2}	
A_{1}	10	-4
A_{2}	5	7

čije je rešenje $p_{1}=\frac{1}{8}$ a $p_{2}=\frac{7}{8}$. Prema tome, možemo pisati da je rešenjje matrične igre

$$
\begin{aligned}
& \mathrm{P}^{*}=\left(\frac{1}{8} ; \frac{7}{8} ; 0\right) \\
& \mathrm{Q}^{*}=\left(\frac{11}{16} ; \frac{5}{16}\right) \\
& \mathrm{C}\left(\mathrm{P}^{*}, \mathrm{Q}^{*}\right)=\frac{45}{8}
\end{aligned}
$$

12. Zadatak

Definicija zadatka. Za matricne igre definisane matricama cene odrediti optimalne strategije igrača i vrednost igre,

ako elementi matrica određuju dobit igrača A u odnosu na igrača B za razlicite parove čistih strategija.

Rešenje
a) $\mathrm{P}=\left(0 ; 5 / 6 ; 0 ; \frac{1}{6}\right)$
b) $\quad \mathrm{P}=(0 ; 4 / 5 ; 1 / 5 ; 0 ; 0)$
$\mathrm{Q}=(2 / 3 ; 1 / 3)$
$\mathrm{Q}=(1 / 5 ; 4 / 5)$
$C(P, Q)=7 / 3$
$C(P, Q)=\frac{21}{5}$.
c) $P=(0 ; 0 ; 0 ; 1 / 6 ; 5 / 6)$
$\mathrm{Q}=(5 / 6 ; 1 / 6)$
$C(P, Q)=7 / 6$.

13. Zadatak

Definicija zadatka. Konačna antagonistička igra svodi se na matricu cene oblika

	B	B_{1}
A_{1}	2	2
A_{2}	4	-2
A_{3}	0	4

Pokazati da reŠenje matrične igre nije jednoznačno u pogledu optimalnih mešovitih strategija.

Odrediti vrednost matrične igre i optimalne strategije za igrača A i B.
Rešenje: Vrednost matrične igre nalazi se ugranicama $2<\mathrm{V}<4.0$ cekivani gubici igraða B definisani su sistemom jednaCina

$$
\begin{aligned}
& C\left(A_{1}, Q\right)=2 q_{1}+2 q_{2} \\
& C\left(A_{2}, Q\right)=4 q_{1}-2 q_{2} \\
& C\left(A_{3}, Q\right)=4 q_{2} .
\end{aligned}
$$

Kako je $q_{1}+q_{2}=1$ to se ovaj sistem svodi na sledeće jednacine

$$
\begin{aligned}
& C\left(A_{1}, Q\right)=2 \\
& C\left(A_{2}, Q\right)=6 q_{1}-2 \\
& C\left(A_{3}, Q\right)=4-4 q_{1} .
\end{aligned}
$$

Ove jednacine koje definišu promenu očekivanog gubitka igrača B, koji primenjuje meşovitu strategiju, u zavisnosti od strategijskog izbora igrača A graficki su prikazane na sledecem dijagramu (slika 1).

Funkcija najvecih gubitaka za igrača B definisana je izrazom

$$
\begin{aligned}
f\left(q_{1}\right) & =\max \left\{2 ; 6 q_{1}-2 ; 4-4 q_{1}\right\} . \\
& 0
\end{aligned}
$$

Vrednost matrične igre je

$$
C(P, Q)=v=f\left(q_{1}^{*}\right)=\min _{q_{1}}\left\{f\left(q_{1}\right)\right\}=2
$$

koja se sračunava određivanjem ordinata tačke B ili C.
Iz ovog proizilazi da rešenje za optimalnu strategiju igrača B nije jednoznǎ̌no. Sve optimalne strategije mogu se odrediti analizom dveju pomoćnih matričnih igara:

| | B | B_{1} |
| :---: | :---: | :---: |B_{2}

$\left.$| | B | B_{1} |
| :---: | :---: | :---: |$B_{2} \right\rvert\, 2$

Rešenje ovih matričnih igara su

$$
\text { I) } \begin{array}{lll}
\mathrm{P}=(1,0) & \mathrm{I} & \text { II) } \\
\mathrm{Q}=(1 / 2,1 / 2) & \mathrm{Q}=\left(\frac{2}{3}, \frac{1}{3}\right) \\
\mathrm{C}(\mathrm{P}, \mathrm{Q})=2 & \mathrm{C}(\mathrm{P}, \mathrm{Q})=2 .
\end{array}
$$

Vrednost $\mathrm{q}_{1}=\frac{1}{2}$ je apscisa tačke B, a vrednost $\mathrm{q}_{1}=\frac{2}{3}$ je apscisa tačke C. Optimalne strategije za igrača B su strategije

$$
\left(\frac{1}{2}, \frac{1}{2}\right) \text { i }\left(\frac{2}{3}, \frac{1}{3}\right)
$$

kao i sve strategije dobijene konveksnom kombinacijom ovih. tj.

$$
\begin{aligned}
& \lambda\left(\frac{1}{2}, \frac{1}{2}\right)+(1-\lambda)\left(\frac{2}{3}, \frac{1}{3}\right)=\left(\frac{2}{3}-\frac{\lambda}{6}, \frac{1}{3}+\frac{\lambda}{6}\right) \\
& \text { za } 0 \leqslant \lambda \leqslant 1 .
\end{aligned}
$$

Prema tome, rešenje prvotibne matrice igre je

$$
\begin{aligned}
& P=(1,0,0) \\
& Q=\left(\frac{2}{3}-\frac{\lambda}{6}, \frac{1}{3}+\frac{\lambda}{6}\right) \quad \text { za } \quad 0 \leqslant \lambda \leqslant 1 \\
& C(P, Q)=2 .
\end{aligned}
$$

ReŠenje igre za igrača A je u domenu čiste strategije,
dok je za igrača B to rešenje u domenu mešovite strategije. Međutim, ako se matrice I i Il posmatraju izolovano tada je očigledno da postoji dominacija među čistim strategijama B_{1} i B_{2}, i jedna i druga matrix̌na igra imaju sedlo, ali to ne utiče na rešenje proobitne matrǐ̌ne igre.

6.3.3. Reşavanje matričnih igara $\mathbf{2 x m}$

Matrične igre kod kojih igraču I stoji na raspolaganju 2 čiste strategije, a igraču II m razlicitih čistih strategija, mogu se takođe rešavati grafički svođenjem na matricu dimenzije 2×2.

Postupak reŠavanja ovih matrǐ̌nih igara ilustrovan je sledecim primerima.

14. Zadatak

Definicija zadatka. U matrǐ̌noj igri igraču I stoje na raspolaganju strategije P_{1} i P_{2}, a igrač II strategije Q_{1}, Q_{2} i Q_{3}. Elemenat $a_{i j} u$ matrici cene predstavlja dobit za igrača I ako odabere i-tu strategiju a njegov protivnik istovremeno odabere j -tu strategiju. Za igrača II ovaj isti elemenat predstavlja gubitak u igri za odgovarajući par strategija. Matrica cene igrę̣data je u tabeli 1.

Tabela 1

Igrac II	Q_{1}	Q_{2}	Q_{3}
P_{1},	6	5	10
P_{2},	10	20	3

Potrebno je:
a) Odrediti optimalne mešovite strategije oba igrača i vrednost igre;
b) Kakve će biti optimalne mesơovite strategije igrača ako élemenat $a_{13} u$ matrici cene promeni vrednost, tako da je nova vrednost ovog elementa jednaka 5?

Rešenje. Matrična igra nema sedlo i rešenje igre se nalazi u domenu mešovitih strategija. Matrična igra ima oblik ($2 x \mathrm{~m}$), što znači da cemo prvo tražiti vektor mešovite strategije za igrača I, tj. traži se

$$
\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right),
$$

gde je

$$
\mathrm{p}_{1}+\mathrm{p}_{2}=1 \mathrm{i} \mathrm{p}_{\mathrm{i}}>0 \mathrm{za} \mathrm{i}=1,2 .
$$

Pre svega, biće potrebno napisati izraze za očekivana plaćanja kada igrač I koristi mešovitu strategiju, a igrač II neki od strategijskih izbora: $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ ili Q_{3}. U ovom slučaju dobija se, da je

$$
\begin{aligned}
& C\left(P, Q_{1}\right)=6 p_{1}+10 p_{2} \\
& C\left(P, Q_{2}\right)=5 p_{1}+20 p_{2} \\
& C\left(P, Q_{3}\right)=10 p_{1}+3 p_{2}
\end{aligned}
$$

pri Čemu je

$$
\mathrm{p}_{1}+\mathrm{p}_{2}=1
$$

Kada se u navedenom sistemu jednačina smeni vrednost za $p_{2}=1-p_{1}$ dobija se novi sistem jednačina

$$
\begin{aligned}
& \mathrm{C}\left(\mathrm{P}, \mathrm{Q}_{1}\right)=10-4 \mathrm{p}_{1} \\
& \mathrm{C}\left(\mathrm{P}, \mathrm{Q}_{2}\right)=20-15 \mathrm{p}_{1} \\
& \mathrm{C}\left(\mathrm{P}, \mathrm{Q}_{3}\right)=3+7 \mathrm{p}_{1} .
\end{aligned}
$$

Za igrača I, određivanje optimalne mešovite strategije znači da on treba da odredi takvu vrednost p_{1}, koja će omogućiti što je moguće veću minimalnu dobit.

Ako to analitički izrazimo, znači da će igrač I ispitivati funkciju $f\left(p_{1}\right)$ definisanu izrazom

$$
f\left(p_{1}\right)=\min \left\{10-4 p_{1} ; 20-15 p_{1} ; 3+7 p_{1}\right\}
$$

u intervalu $0 \leqslant p_{1} \leqslant 1$, pri čemu se traži takvo p_{1}^{*} za koje važi relacija

$$
\mathrm{f}\left(\mathrm{p}_{1}^{*}\right)=\max _{\mathrm{p}_{1}} \mathrm{f}\left(\mathrm{p}_{1}\right)
$$

Da bi odredili funkciju $f\left(p_{1}\right)$, moramo grafički prikazatio očekivana plaçanja igrača II u funkciji verovatnoće p_{1} koja su definisana prethodnim sistemom jednǎ̌ina. Ovaj grafički prikaz dat je na slici 1.

Slika 1.
Izlonljena linija $A B C D$ predstavlja funkciju $f\left(p_{1}\right)$ sa maksimumom u tacki B. Prema tome, tacka B odgovara optimalnoj meşovitoj strategiji łgrača I, obezbeđujuci $m u$ najvecu minimalnu dobit, a $p_{1} *$ sračunavamo tražeçi presek pravih $\mathbf{C}\left(P, Q_{3}\right)$ i $\mathbf{C}\left(P, Q_{1}\right)$, tj. imamo da je

$$
10-4 p_{i}^{*}=3+7 p^{*},
$$

odakle proizilazi da je

$$
\begin{gathered}
p_{1}^{*}=\frac{7}{11}, p_{2}^{*}=1-\frac{7}{11}=\frac{4}{11} . \\
C\left(P, Q_{1}\right)=\frac{82}{11} .
\end{gathered}
$$

Igrac Il mora nastojati da odabere svoju mesovitu strategiju tako da ne dozvoli igracu I da ostvari vecu dabit nego sto je dobit

$$
\mathrm{C}\left(\mathrm{P}^{*}, \mathrm{Q}_{144}\right)=\frac{82}{11} .
$$

Naime, na osnovu jednacina za $C\left(P, Q_{1}\right), C\left(P, Q_{2}\right)$ i $C\left(P, Q_{3}\right)$ sračunavaju se prosę̌na plaćanja, pri čemu se dobija

$$
\begin{aligned}
& C\left(P^{*}, Q_{1}\right)=\frac{82}{11}, \\
& C\left(P^{*}, Q_{2}\right)=\frac{115}{11}, \\
& C\left(P^{*}, Q_{3}\right)=\frac{82}{11} .
\end{aligned}
$$

Polazeéi od opsteg izraza za vrednost matrične igre možemo pisati da je

$$
C\left(P^{*}, Q\right)=\sum_{j=1}^{3} C\left(P^{*}, Q_{j}\right) \cdot q_{j},
$$

te prema tome, imamo da je

$$
\begin{aligned}
& C\left(P^{*}, Q\right)=\frac{82}{11} q_{1}+\frac{115}{11} q_{2}+\frac{82}{11} q_{3}, \\
& C\left(P^{*}, Q\right)=\frac{82}{11} q_{1}+\frac{115}{11} q_{2}+\frac{82}{11}\left(1-q_{1}-q_{2}\right), \\
& C\left(P^{*}, Q\right)=\frac{82}{11}+\frac{33}{11} q_{2} .
\end{aligned}
$$

Iz poslednje jednačine očigledno je da igrač II treba da odabere strategiju q_{2} = 0 . Prema tome, optimalna mesovita strategija igrača II je

$$
\mathrm{Q}^{*}=\left(\mathrm{q}_{1}^{*}, 0, \mathrm{q}_{3}^{*}\right),
$$

sto je ekvivalentno matricnoj igri 2×2 sa matricom cene datom u tabeli 2 .
Tabela 2

	Q_{1}	Q_{3}
11	6	10
P_{1}	10	3

Rešavajuči ovu matričnu igru dobijamo rešenje za q_{1}^{*} i q^{*}

$$
\begin{aligned}
& \mathrm{q}_{1}^{*}=\frac{\frac{82}{11}-10}{6-10}=\frac{7}{11}, \\
& \mathrm{q}_{3}^{*}=1-\frac{7}{11}=\frac{4}{11} .
\end{aligned}
$$

Vektor optimalne mesovite strategije za igrača II je

$$
\mathrm{Q}^{*}=\left(\frac{7}{11} ; 0 ; \frac{4}{11}\right),
$$

a vrednost matrix̌ne igre je

$$
\mathrm{C}\left(\mathrm{P}^{*}, \mathrm{Q}^{*}\right)=\frac{82}{11} .
$$

Ako je vrednost elementa $a_{13}=5$, problem se svodi na rešavanje nove matrične igre. Međutim, ako na grafikonu (slika 1) ucrtamo novo ocekivano placanje

$$
C\left(P, Q_{3}\right)=5 p_{1}+3 p_{2}=2 p_{1}+3,
$$

s obzirom da je $p_{1}+p_{2}=1$, te možemo zakljǔ̌iti da se u ovom slučaju funkcija $f\left(p_{1}\right)$ svodi na duž AD a py* je jednako jedinici, sto znači da se rešenje igre nalazi u domenu Cisith strategija, tj. matrična igra ima sedlo i rešenje je

$$
P=(1 ; 0), Q=(0 ; 0 ; 1) \text { i } C(P, Q)=5 .
$$

15. Zadatak

Definicija zadatka. Matrične igre definisane su matricama cena, čiji elementi pokazuju dobit igrača I u zavisnosti od svog strategijskog izbora i strategijskog izbora igrača II.
A)

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$
$\mathrm{~A}_{1}$	0,4	0,5	0,8
$\mathrm{~A}_{2}$	0,7	0,2	0,1

B)

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	4	7	1	-2
$\mathrm{~A}_{2}$	0	-3	4	2

C)

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$
$\mathrm{~A}_{1}$	2	4	0	3	5
$\mathrm{~A}_{2}$	6	3	8	4	2

D)

	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}
A_{1}	5	3	6	4	5
A_{2}	4	1	8	4	2

Odrediti reŠenje matričnih igara.

Rešenje

A) $\mathrm{P}=\left(\frac{5}{6}, \frac{1}{6}\right)$
B) $\mathrm{P}=\left(\frac{5}{14}, \frac{9}{14}\right)$
$\mathrm{Q}=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$
$\mathrm{Q}=\left(0, \frac{2}{7}, 0, \frac{5}{7}\right)$
$C(P, Q)=0,45$
$C(P, Q)=\frac{4}{7}$
C) $\mathrm{P}=\left(\frac{1}{2}, \frac{1}{2}\right)$
D) $\mathrm{P}=(1,0)$

$$
\begin{aligned}
& \mathrm{Q}=\left(0,0,0, \frac{3}{4}, \frac{1}{4}\right) \\
& \mathrm{C}(\mathrm{P}, \mathrm{Q})=\frac{7}{2}
\end{aligned}
$$

$$
\mathrm{Q}=(0,1,0,0,0)
$$

$$
C(P, Q)=3
$$

6.3.4. Rešavanje matričnih igara redukcijom matrice cene

Svođenjem konačne antagonističke igre na matričnu formu ne mora biti uvek jednoznačno, što može biti od interesa pri iznalaženju rešenja matrične igre. Drugim rečima. matrica cene polazne matrične igre može se često transformisati čime se olakšava postupak određivanja optimalnih strategija igrača i vrednosti matrične igre. Ove transformacije baziraju na pojmovima duple strategije i dominacije medu strategijama.

Naime. polazeći od opšte definicije matrične igre, na skupu mogućnosti, tj. čistih strategija igrača mogu se definisati:

- duple strategije, i
- dominacija među strategijama.

Za dve čiste strategije igrača A ,

$$
\begin{aligned}
& a_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i j}, \ldots, a_{i n}\right), i \\
& a_{k}=\left(a_{k 1}, a_{k 2}, \ldots, a_{k j}, \ldots, a_{k n}\right),
\end{aligned}
$$

kome stoji na raspolaganju n strategijskih mogućnosti na suprot igraču B sa m strategijskih mogućnosti, kažemo da su duple ako je ispunjen uslov

$$
a_{i j}=a_{k j}, \quad z a \quad j=1,2, \ldots, n:
$$

U ovom slučaju jedna od čistih strategija može da se zanemari što za rešavanje matrične igre može biti od interesa.

Ako među čistim strategijama $a_{i} i a_{k}$ postoji takav odnos da je

$$
\mathrm{a}_{\mathrm{ij}} \geqslant \mathrm{a}_{\mathrm{kj}}, \quad \text { za } \quad \mathrm{j}=1,2, \ldots, \mathrm{n},
$$

i postoji bar jedno j za koje je elemenat $a_{i j}$ veći od $a_{k j}$, tada je čista strategija a_{k} nepovoljna za igrača A i on je neće birati. Drugim rečima kažemo da je strategija a_{i} dominantna u odnosu na strategiju a_{k}, sto nam pruža mogućnost da u matrici cene zanemarimo red a_{k} pri rešavanju matrične igre.

Na sličan način na skupu mogučih strategija igrača B možemo definisati uslove za postojanje duplih i dominantnih strategija.

U sledecim primerima ilustrovan je ovaj prilaz u rešavanju matričnih igara.

16. Zadatak

Definicija zadatka. Dve protivničke strane učestvujuci u duelu mogu da biraju, nezavisno jedna od druge, jednu od četiri moguće alternative koje su naznačene u tabeli 1 .

Tabela 1.

$\operatorname{lgra} x$	Alternative				
1	x_{1}	x_{2}	x_{3}	x_{4}	
11	y_{1}	y_{2}	y_{3}	y_{4}	

Funkcija cene igre za igrača I koja zavisi od strategijskog izbora, tj. od para alternativa ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}$), definisana je sledećim podacima:

$$
\begin{aligned}
& C\left(x_{1}, y_{1}\right)=2 ; C\left(x_{1}, y_{2}\right)=0 ; C\left(x_{1}, y_{3}\right)=1 ; C\left(x_{1}, y_{4}\right)=4 ; \\
& C\left(x_{2} ; y_{1}\right)=1 ; C\left(x_{2}, y_{2}\right)=2 ; C\left(x_{2}, y_{3}\right)=5 ; C\left(x_{2}, y_{4}\right)=3 ; \\
& C\left(x_{3}, y_{1}\right)=4 ; C\left(x_{3}, y_{2}\right)=1 ; C\left(x_{3}, y_{3}\right)=3 ; C\left(x_{3}, y_{4}\right)=2 ; \\
& C\left(x_{4}, y_{1}\right)=1 ; C\left(x_{4}, y_{2}\right)=2 ; C\left(x_{4}, y_{3}\right)=5 ; C\left(x_{4}, y_{4}\right)=3 ;
\end{aligned}
$$

a) Formirati matricu cene igre.
b) Pronaći dominantne i duple strategije matrixne ige.
c) Izračunavati optimalne strategije igrača i naci vrednost matrične igre.

Resenje: a) Matrica cene igre ima oblik

$$
A=\left\|\begin{array}{llll}
2 & 0 & 1 & 4 \\
1 & 2 & 5 & 3 \\
4 & 1 & 3 & 2 \\
1 & 2 & 5 & 3
\end{array}\right\|
$$

ili ako to tablično predstavino imacemo da određenom redu odgovara određena alternativa igrača I, a određenoj koloni odgovara određena alternativa igrač II, kako je to prikazano u tabeli 2.

Tabela 2

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	2	0	1	4
x_{2}	1	2	5	3
x_{3}	4	1	3	2
x_{4}	1	2	5	3

b) Dominantre i duple strategije. Za igraca I strategije x_{2} i x_{4} su duple. Prema tome, od te dve alternative on ce uvek birati samo jendu. Otuda se matrica cene svodi na oblik koji je prikazan u tabeli 3.

Tabela 3

	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	2	0	1	4
x_{2}	1	2	5	3
x_{3}	4	1	3	2

Za igraca II alternativa y_{2} je dominantna u odnosu na y_{3} i y_{4}.
Prema tome, igrac II ce uvek birati alternativu y_{2}. Otuda ce matrica cene biti svedena na oblik dat u tabeli 4.

Tabela 4

	11	y_{1}
x_{1}	2	0
x_{2}	1	2
x_{3}	4	1

Za igraČa I alternativa x_{3} je dominantna u odnosu na alternativu x_{1}, jer mu ona uvek obezbeđuje veçu dobit bez obzira sta cee izabrati igrač II. Prema tome, matrica cene igre redukuje se na dimenzije 2×2, tj. kao sto je to prikazano u tabeli 5.

Tabela 5

	II	y_{1}
x_{2}	1	2
x_{3}	4	1

c) Optimalne strategije igrača i vrednost igre. Kako ova matrična igra nema sedlo (sedlastu tačku) to ce se njeno rešenje nalaziti u domenu mešovitih strategija.

Vektor mešovitih strategija za igrača I je

$$
P=\left(p_{1}, p_{2}, p_{3}, p_{4}\right),
$$

gde smo već utvrdili da je $\mathrm{p}_{1}=0 \mathrm{i} \mathrm{p}_{4}=0$.
Vektor mesovitih strategija za igrača II je

$$
Q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)
$$

gde smo takode utvrdili da su strategije $\mathrm{q}_{3}=0 \mathrm{i} \mathrm{q}_{4}=0$.
Preostale komponente vektora mešovitih strategija \mathbf{P} i Q odredicemo rešavajuci matričnu igru

Po definiciji očekivana vrednost igre je

$$
C(P, Q)=\sum_{i \neq 2} \sum_{j} a_{j} p_{i} q_{j} .
$$

Polazeći od vrednosti za a_{ij} redukovane matrice možemo pisati da je

$$
C(P, Q)=1 \cdot p_{2} q_{1}+2 \cdot p_{2} q_{2}+4 \cdot p_{3} q_{1}+1 \cdot p_{3} q_{2},
$$

ili ako razdvojimo mešovite strategije možemo pisati da je

$$
C(P, Q)=p_{2}\left(q_{1}+2 q_{2}\right)+p_{3}\left(4 q_{1}+q_{2}\right)
$$

Ako je rešenje igre za igrača I u domenu meŠovitih strategija, tj. ako su verovatnoće p_{2} i p_{3} veće od nule i ispunjavaju uslov za mešovite strategije igrača A, da je $p_{2}+p_{3}=1$, tada su u važnosti sledeće jednakosti:

$$
q_{1}+2 q_{2}=C(P, Q), \text { i } 4 q_{1}+q_{2}=C(P, Q)
$$

Sa druge strane, ako razdvajanje meకovitih strategija izvedemo na drugi način možemo pisati da je

$$
C(P, Q)=q_{1}\left(p_{2}+4 p_{3}\right)+q_{2}\left(2 p_{2}+p_{3}\right)
$$

Ako je rešenje igre za igrača II u domenu mesovith strategija, tj. ako su verovatnoce $q_{1} i q_{2}$ vece od nule i ispunjavaju uslov za metovite strategije igrača A, da je $q_{1}+\dot{q}_{2}=1$, tada su u važnosti sledeće jednakosti:

$$
\begin{aligned}
& p_{2}+4 p_{3}=C(P, Q) \\
& 2 p_{2}+p_{3}=C(P, Q)
\end{aligned}
$$

Ako poslednjem sistemu jednacina dodamo jednacinu

$$
p_{2}+p_{3}=1
$$

možemo naçi rešenje ovog sistema jednacina koje je u opštem slučaju dato sledecim izrazima:

$$
\begin{aligned}
& p_{2}=\frac{a_{22}-a_{21}}{a_{11}+a_{22}-\left(a_{12}+a_{21}\right)} \\
& p_{3}=1-p_{2}, i \quad C(P, Q)=a_{11} p_{2}+a_{21} p_{3} .
\end{aligned}
$$

Kako je $a_{11}=1, a_{12}=2, a_{21}=4 i a_{22}=1$, zamenom ovih vrednosti u prethodnim jednačinama dobija se dajei

$$
p_{2}=\frac{3}{4}, p_{3}=\frac{1}{4} i C(P, Q)=\frac{7}{4}
$$

Meiovite strategije vektora \mathbf{Q} definisane su izrazima

$$
\begin{aligned}
& q_{1}=\frac{C(P, Q)-a_{12}}{a_{11}-a_{12}} \\
& q_{2}=1-q_{1},
\end{aligned}
$$

odakde proizilazi da je

$$
\mathrm{q}_{1}=\frac{1}{4} \text { i } \mathrm{q}_{2}=\frac{3}{4} .
$$

Prema tome, reženje problema je

$$
\begin{aligned}
& P=\left(0, \frac{3}{4}, \frac{1}{4}, 0\right), \\
& Q=\left(\frac{1}{4}, \frac{3}{4}, 0,0\right), \\
& C(P, Q)=\frac{7}{4} .
\end{aligned}
$$

17. Zadatak

Definicija zadatka. Konačna antagonistička igra u kojoj učestvuju dva igrača svodi se na matričnu igru sa matricom cene, koja je data u tabeli l. Elementi matrice definisu dobit igrača I u odnosu na igrača II.

Tabela 1

Igrac II	B_{1}	B_{2}	B_{3}
Igrac I	2	4	2
A_{1}	4	0	5
A_{2}	0	8	1
A_{3}			

Odrediti optimalne strategije igrača i naci vrednost igre.

Resenje. Prvo, utvrduje se da li matrična igra ima rešenje u domenu čistih strategija.

II	B_{1}	B_{2}	B_{3}	nim reda
A_{1}	2	4	2	2
A_{2}	4	0	5	0
A_{3}	0	8	1	0
max kolone	4	8	5	

Kako je

$$
\begin{aligned}
& \alpha=\max (2 ; 0 ; 0)=2 \\
& \beta=\min (4 ; 8 ; 5)=4,
\end{aligned}
$$

sto znaci da su gornja i donja vrednost igre zralicite; jgra nema sedlo i njeno rešenje se nalazi u domenu mešovitih strategija.

Kada se uporede strategije B_{1} i B_{3} drugog igrača, ocigledno je da je strategija B_{3} za njega uvek nepovoljnija u odnosu na B_{1}. Prema tome, kolonu B_{3} u matrici cene možemo brisati čime se prethodna igra svodi na igru 3×2.

Vektor meJ̌ovite strategije za igrača II je

$$
Q=\left(q_{1}, q_{2}, 0\right) ; q_{1}+q_{2}=1 ; q_{j} \geqslant 0,(j=1,2.3)
$$

Vektor mešovite strategije za igračal je

$$
P=\left(p_{1}, p_{2}, p_{3}\right) ; p_{1}+p_{2}+p_{3}=1 ; p_{1} \geqslant 0 . \quad(i=1,2,3)
$$

Očekivano plaçanje za igrača II, ako igrač I odabere čistu strategiju A_{1}, je

$$
C\left(A_{1}, Q\right)=2 q_{1}+4 q_{2},
$$

a za ostale ciste strategije igrača I možemo pisati

$$
\begin{aligned}
& C\left(A_{2}, Q\right)=4 q_{1}+0 q_{2} \\
& C\left(A_{3}, Q\right)=0 q_{1}+8 q_{2} .
\end{aligned}
$$

Kako je $\mathrm{q}_{1}+\mathrm{q}_{2}=1$, to se dalje može pisati da je

$$
\begin{aligned}
& C\left(A_{1}, Q\right)=4-2 q_{1} \\
& C\left(A_{2}, Q\right)=4 q_{1} \\
& C\left(A_{3}, Q\right)=8-8 q_{1}
\end{aligned}
$$

Poslednji sistem jednačina prikazan je grafički na slici 1, gde su sracunate vrednosti za komponente vektora Q, kao i vrednost igde V.

Slika 1.

Iz slike se vidi da je za igrača I aktivan par strategija bilo koji par: $\mathbf{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{2}}$, $\mathrm{A}_{1} \mathrm{~A}_{3}, \mathrm{~A}_{2} \mathrm{~A}_{3}$.

Imajući u vidu prethodno dobijene rezultate prvobitnu matričnu igru možemo svesti na matricu 2×2. Ako prvi igrač uzme za aktivne strategije \mathbf{A}_{1} i $\mathbf{A}_{\mathbf{2}}$ matrica cene će biti:

	B_{1}	B_{2}
A_{1}	2	4
A_{2}	4	0

Prema tome, komponente vektora mešovite strategije \mathbf{P} pronalazimo rȩ̌avajuci ovu matricu, tj. re§̆avajuči sledeçi sistem jednaçina

$$
\begin{aligned}
2 p_{1}+4 p_{2} & =V \\
4 p_{1}+0 p_{2} & =V \\
p_{1}+p_{2} & =1
\end{aligned}
$$

odakle sledi da je

$$
p_{1}=\frac{2}{3}, p_{2}=\frac{1}{3} \text { i } V=\frac{8}{3}
$$

Vektor mešovite strategije za početnu matričnu igru je, za igrača I

$$
P=(2 / 3,1 / 3,0)
$$

a za igrača II

Vrednost igre je

$$
C(P, Q)=V=\frac{8}{3}
$$

18. Zadatak

Definicija zadatka. Proveriti da li ce rešenje matrične igre u prethodnom zadatku biti isto ako igrač I izabere za aktivne strategije:
a) strategijski par $A_{1} A_{3}$, ili
b) strategijski par $A_{2} A_{3}$.

Resenje. a) Za strategijski par $\mathbf{A}_{1} \mathbf{A}_{\mathbf{3}}$ matrična igra se svodi na matricu cene

	11	B_{1}	B_{2}
A_{1}	2	4	2
A_{3}	0	8	1

Cija je rešenje u domenu čistih'strategija, i to parovi $\left(A_{1}, B_{1}\right) i\left(A_{1}, B_{3}\right)$.
b) Za strategijski par $\mathbf{A}_{1} \mathbf{A}_{\mathbf{3}}$ matrična igra se svodi na matricu cene

	$1 I$	B_{1}	B_{2}
A_{3}	4	0	5
A_{3}	0	8	1

Resenje igre nalazi se u domenu mešovitih strategija.
Očekivane dobiti igrača I mogu se prikazati sledecim sistemom jednačina

$$
\begin{aligned}
& C\left(P, B_{1}\right)=4 p_{1} \\
& C\left(P, B_{2}\right)=8-8 p_{1} \\
& C\left(P, B_{3}\right)=4 p_{1}+1
\end{aligned}
$$

Ako promene ovih očekivanih dobiti l zavisnosti od promene velicine p_{1} prikažemo grafički dobija se sledeci dijagram (slika 1).

Prema tome,

$$
P=\left(\frac{2}{3}, \frac{1}{3}\right), \text { a } v=8 / 3
$$

Ovome odgovara vektor mešovite strategije za igrača II,

$$
\mathrm{Q}=(2 / 3,1 / 3,0) .
$$

Prema tome, strategijski par ($\mathbf{A}_{\mathbf{2}} \mathrm{A}_{\mathbf{3}}$) je jednako pogodan za igrača I kao i strategijski par $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$, dok je strategijski par $\left(\mathbf{A}_{1}, \mathbf{A}_{3}\right)$ nepovoljan.

19. Zadatak

Definicija zadatka. Koristeci se osobinama duplih strategija i dominacijom među strategijama, naći rešenja matričnih igara definisanih matricama cena:

A)	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}
A_{1}	1	2	-1	-3	-2
A_{2}	0	7	2	-5	-1
A_{3}	2	3	0	-2	-1
A_{4}	4	4	1	3	-3
A_{5}	-1	1	5	4	3

B)

	B_{1}	B_{2}	B_{3}	B_{4}
A_{1}	10	10	2	2
A_{2}	2	2	9	9
A_{3}	5	10	5	10
A_{4}	4	2	4	2

C)

	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}
A_{1}	0,3	0,4	0,5	1	0
A_{2}	0,2	0,3	0,6	0	1
A_{3}	0,1	0,5	0,3	0,1	0

D)

	B_{1}	B_{1}	B_{2}	B_{3}
	B_{4}			
A_{1}	2	3	5	4
A_{2}	1	3	4	3
A_{3}	2	3	5	4
A_{4}	5	4	2	1

Resenje:

$$
\text { A) } \begin{aligned}
P & =\left(0,0, \frac{7}{8}, 0, \frac{1}{8}\right) \\
Q & =\left(0,0,0, \frac{1}{4}, \frac{3}{4}\right) \\
C(P, Q) & =-\frac{5}{4}
\end{aligned}
$$

B) $\quad \mathbf{P}=\left(\frac{7}{15}, \frac{8}{15}, 0,0\right)$
C) $\mathbf{P}=\left(\frac{8}{11}, \frac{3}{11}, 0\right)$
$Q=\left(\frac{11}{15}, 0, \frac{4}{15}, 0\right)$
$Q=\left(\frac{10}{11}, 0,0,0, \frac{1}{11}\right)$
$C(P, Q)=\frac{86}{15}$
$C(P, Q)=\frac{3}{11}$
D) $\mathrm{P}=\left(\frac{2}{3}, 0,0, \frac{1}{3}\right) \quad \mathrm{Q}=\left(\frac{1}{2}, 0,0, \frac{1}{2}\right)$

$$
C(P, Q)=3
$$

6.4. RESAVANJE MATRIČNIH IGARA $n \times m$ PRIMENOM LINEARNOG PROGRAMIRANJA

Svaku konačnu antagonističku igru dva licsa nultom sumom možemo rešiti primenom linearnog programiranja. Kanoniéni oblik ove igre je matrica placanja façača Il u odnosu na igrača I,

$$
A=\left\|a_{\sharp j}\right\|,(i=1,2, \ldots, m ; j=1,2, \ldots, n)
$$

gde se indeks i odnosi na strategijske mogućnosti igrača I, a indeks j na strategijske moguénosti igrača II.

Ako pretpostavimo da su primenljive svaka od n strategijskih moguénosti igrača I, odredimo verovatnoçe njihovog korišcenja u sklopu optimalne mešovite strategije (ako je neka od strategijskih mogućnosti nekorisna to ce odgovarajuća verovatnoća biti jednaka nuli). Označimo ove verovatnocé sa $p_{1} p_{2}, \ldots, p_{m}$, a vrednost igre sa V. Pošto za optimalnu strategiju očekivana dobit igrača I ne može biti manja od vrednosti igre V za bilo koji strategijski izbor protivnika. evo matematički možemo izraziti sa n nejednačina

$$
\begin{aligned}
& a_{11} p_{1}+a_{21} p_{2}+\ldots+a_{m 1} p_{m} \geqslant V \\
& a_{12} p_{1}+a_{22} p_{2}+\ldots+a_{m 2} p_{m} \geqslant V \\
& \ldots \ldots+\ldots \ldots a_{m n} p_{m} \geqslant V \\
& a_{1 n} p_{1}+a_{2 n} p_{2}+\ldots+\ldots
\end{aligned}
$$

Sada uvodimo nove promenljive,

$$
x_{1}=\frac{p_{1}}{V} ; x_{2}=\frac{p_{2}}{V} ; \ldots x_{m}=\frac{p_{m}}{V}
$$

Da bi izbegli mogućnost deljenja sa nulom, možemo se uvek obezbediti da bude $V>0$. Dovoljno je matricu A transformisati tako da svi elementi novodobijene matrice budu veći od nule. Može se pokazati da cé ova transformacija povećati vrednost igre za veličinu d koja se dodaje elementima matrice A da bi postali veci od nule.

Kako je $p_{1}+p_{2}+\ldots+p_{m}=1$, to ce zbir novouvedenih promenljivih biti

$$
x_{1}+x_{2}+\ldots+x_{m}=\frac{1}{V}
$$

Ako se leva i desna strana nejednačine podeli sa V dobija se novi sistem nejednačina

$$
\begin{align*}
& a_{11} x_{1}+a_{21} x_{2}+\ldots+a_{m 1} x_{m} \geqslant 1 \\
& a_{12} x_{1}+a_{22} x_{2}+\ldots+a_{m 2} x_{m} \geqslant 1 \tag{1}
\end{align*}
$$

$$
a_{1 n} x_{1}+a_{2 n} x_{2}+\ldots+a_{m n} x_{m} \geqslant 1
$$

Za uvedene uslove sve promenljive x_{i} su veće od nule.
Kako je cilj optimalne strategije igrača I maksimizacija dobiti, to ce za ostvarivanje ovog cilja biti potrebno da se linearna funkcija

$$
\begin{equation*}
\mathrm{f}(\mathrm{X})=\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{m}}=\frac{1}{\mathrm{~V}} \tag{2}
\end{equation*}
$$

minimizira. Prema tome, optima!na strategija proog igrača, tj. skup verovatnoća $p_{i}=V x_{i}(i=1,2, \ldots, m)$, određuje se iznalaženjem minimuma funkcija $f(X)$ za x_{i} veća od nule a da pri tome bude zadovoljen sistem ograničenja (1).

Vektor optimalne mešovite strategije igrača II, tj . skup verovatnoća $\mathrm{q}_{\mathrm{j}}(\mathrm{j}=1$, $2, \ldots, n$), može se odrediti na sličan način. Pošto za optimalnu strategiju očekivani gubitak drugog igrača ne može biti veći od V pri bilo kojoj strategiji protivnika, to se može pisati sledeči sistem nejednačina,

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} q_{j} \leqslant V, \quad(i=1,2, \ldots, m) \tag{3}
\end{equation*}
$$

Na sličan način, kao u prethodnom slučaju, i ovde se uvode nove promenljive
ciji je zbir

$$
\begin{aligned}
& y_{j}=\frac{q_{j}}{V},(j=1,2, \ldots, n) \\
& y_{1}+y_{2}+\ldots+y_{n}=\frac{1}{V} \text { jer je } q_{1}+q_{2}+\ldots+q_{n}=1
\end{aligned}
$$

Uslov nenegativnosti promenljivih y_{j}, kao i promenljivih x_{i} u prethodnom modelu, može se ostvariti transformacijom početne matrice cene igre. Naime, dodavanjem dovoljno velikog pozitivnog broja d tako da je $A^{\prime}=A+d$, postiže se da će vrednost $\mathrm{V}^{\prime}=\mathrm{V}+\mathrm{d}$ biti uvek veća od nule, a samim tim postiže se i uslov nenegativnsoti promenljivih $\mathrm{x}_{\mathrm{i}} \mathrm{i} \mathrm{y}_{\mathrm{j}}$.
Kako optimalna strategija igrača II ima za cilj minimizaciju gubitaka, to će ovaj cilj biti postignut maksimizacijom funkcije

$$
\begin{equation*}
\Phi(\mathrm{Y})=\mathrm{y}_{1}+\mathrm{y}_{2}+\ldots \mathrm{y}_{\mathrm{n}}=\frac{1}{\mathrm{~V}} . \tag{4}
\end{equation*}
$$

Optimalna strategija igrača II, tj. skup verovatnoća $q_{j}=V_{y j}$, može se odrediti iznalaženjem maksimuma funkcije $\Phi(Y)$ zá y_{j} veće od nule, a da pri tome budu zadovoljene ograničenjima koja su definisana sistemom nejednačina (3).

Iz prethodnog razmatranja proizilazi da je

$$
(\min) f(\mathrm{X})=\underset{163}{(\max)} \Phi(\mathrm{Y})=\frac{1}{\mathrm{~V}}
$$

Prema tome, na preblem iznalaženja rešenja matrične jgre primenom linearnog programiranja treba gledati kao na resavanje jedinstvenog zadattka LP, gde se na osnovu rešenja primarnog zadatka odreduje optimalna strategija jodnog igrača, a na osnovu resenja dualnog zadatka određuje optimalna stratogija drugos učesnika u igri. Pri iznalaženju optimalnih strategija igrača treba koristiti cinjenicu da resenje primarnog zadatka sadrzi i resenje dualnog zadatka linearnog programiranja.

Bilinearni pristup ${ }^{(16)}$ - Polazeći od osnovnog matematičkog modela, koji je definisan izrazima (1) i (2), može se izvesti bilinearni model (15) koji direktno daje resenja oba linearna modela. Bilinearni model ima funkciju cilja oblika

$$
\begin{equation*}
F(X, Y)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} x_{i} y_{j} \tag{5}
\end{equation*}
$$

a ograničenja su

$$
\begin{align*}
& \sum_{i=1}^{m} a_{i j} x_{i} \geqslant 1, \quad(j=1,2, \ldots \ldots, \\
& \sum_{j=1}^{n} a_{i j} y_{j} \leqslant 1, \quad(i=1,2, \ldots \ldots, m) \tag{6}\\
& x_{i} \geqslant 0, \quad y_{j} \geqslant 0
\end{align*}
$$

Bilinearna metoda rešavanja zadataka iz oblasti matričnih igara bazirana na matematičkom modelu definisanom izrazima (5) i (6). Lako se može pokazati da je $F(X, Y)$ $=1 / \mathrm{V}$, gde je V - vrednost igre, pri čemu se polazi od opšte definicije vrednosti igre, gde je

$$
V=C(P, Q)=\sum_{j=1}^{n} \sum_{i=1}^{m} a_{i j} p_{i} q_{j}
$$

Bilinearni algoritam ilustrovan je na konkretnim numeričkim primerima.

20. Zedatak

Defínicija zadatka. Naci reşenje matrične igre, koja je definisana matricom cene

Igraè II	B_{1}	B_{2}
Igrǎ̀ I		
A_{1}	0,2	0,8
A_{2}	0,7	0,3

gde su \mathbf{B}_{1} i \mathbf{B}_{2} strategijske mogućnosti igrača II, a A_{1} i $\mathrm{A}_{\mathbf{2}}$ strategijske mogućnosti igrača I. Problem resiti primenom linearnog programiranja.

Rešenje. Matematički model zadatka linearnog programiranja preko koga izračunavamo vektor mešovite strategije

$$
\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right),
$$

gde je $\mathrm{pp}_{1}+\mathrm{p}_{2}=1 \mathrm{i} \mathrm{p}_{1} \geqslant 0$ i $\mathrm{p}_{2} \geqslant 0$, ima sledeci oblik

$$
\begin{aligned}
& (\min) f(X)=x_{1}+x_{2}=\frac{1}{V} \\
& 0,2 x_{1}+0,7 x_{2} \geqslant 1 \\
& 0,8 x_{1}+0,3 x_{2} \geqslant 1 \\
& \mathrm{x}_{1} \geqslant 0, \mathrm{x}_{2} \geqslant 0
\end{aligned}
$$

Matematički model zadatka linearnog programiranja preko koga izračunavamo vektor mešovite strategije

$$
\mathrm{Q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right),
$$

gde je $\mathrm{q}_{1}+\mathrm{q}_{2}=1, \mathrm{q}_{1} \geqslant 0$ i $\mathrm{q}_{2} \geqslant 0$, ima sledeci oblik

$$
\begin{aligned}
& (\max) \phi(Y)=y_{1}+y_{2}=\frac{1}{V} \\
& 0,2 y_{1}+0,8 y_{2} \leqslant 1 \\
& 0,7 y_{1}+0,3 y_{2} \leqslant 1 \\
& y_{1} \geqslant 0 i \quad y_{2} \geqslant 0 .
\end{aligned}
$$

Problem ce biti rešen grafičkom metodom. Na slici 1 prikazano je rešenje problema $z a$ izgrača I, gde su dobijene vrednosti za promenljive x_{1} i x_{2}.

Slika 1.

Dobijeno rešenje osnovnog problema je $\mathrm{x}_{1}=4 / 5, \mathrm{x}_{2}=6 / 5$, a vrednost funkcije cilja je

$$
f(X)=x_{1}+x_{2}=\frac{4}{5}+\frac{6}{5}=\frac{10}{5}=2 .
$$

Prema tome, vrednost igre je $\mathrm{V}=0,5$, a komponente vektora optimalne mešovite strategije P su

$$
\begin{gathered}
p_{1}=V x_{1}=0,5 \frac{4}{5}=0,4 \\
p_{2}=1-p_{1}=1-0,4=0,6
\end{gathered}
$$

Vektor mešovite strategije Q određuje se na osnovu matematick kog modela dualnog zadatka linearnog programiranja. Međutim, ako koristimo već izračunatu vrednost matrične igre vrednosti za y_{1} i y_{2} mogu se dobiti rešenjem sledeçeg sistema jednacina

$$
\begin{aligned}
& y_{1}+y_{2}=2 \\
& 0,2 y_{1}+0,8 y_{2}=1
\end{aligned}
$$

odakle proizilazi da je $y_{1}=1$ i $y_{2}=1$. Prema tome, za komponente vektora Q možemo pisati da su

$$
\begin{aligned}
& q_{1}=V y_{1}=0,5 \cdot 1=0,5 \\
& q_{2}=V y_{2}=0,5 \cdot 1=0,5
\end{aligned}
$$

tj. možemo pisati da je rešenje date matrične igre

$$
\mathrm{Q}=(0,5 ; 0,5) \quad \mathrm{P}=(0,4 ; 0,6) \quad \mathrm{V}=0,5
$$

Zadatak za vežbu. Naći rȩ̌enje prethodne matrične igre nekom drugom metodom i uporediti dobijena rešenja.

21. Zadatak

Definicija zadatka. Dva dečaka se igraju tako što nezavisno jedan od drugog pokazuju jedan, dva ili tri prsta. Dobit ili gubitak.u igri određuje ukupan broj ispruženih prstiju. Ako je ispruženi broj prstiju paran, onda taj broj označava dobit prvog dečaka (u dinarima), a ako je broj ispruženih prstiju neparan, onda taj broj označava dobit u dinarima drugog dečaka.
a) Formirati matricu plaćanja (cene).
b) Naći rešenje matrične igre.
c) Utvrditi da li je igra ravnopravna za oba igrača.

Rešenje. Iz same definicije igre proizilazi da će matrica plaćanja imati sledeći oblik:

STR D_{2}				Minimum reda
STR D I_{1}	I_{1}	H_{2}	II_{3}	-3^{*}
I_{1}	2	-3	4	5
I_{2}	-3	4	5	5
I_{3}	4	-5	6	
maksimum kolone	4^{*}	4^{*}	6	

Donja vrednost igre je $\alpha=-3$, a gornja vrednost igre je $\beta=4$. Kako matrična igra nema sedlo, jer su donja i gornja vrednost igre različite, to ne postoje stabilne minimaksne strategije. Rešenje łgre treba tražiti u domenu mešovitih strategija.

Obzirom da oba ư̌esnika u igri imaju isti broj strategijskih mogućnosti - tri, reṡenje matrične igre naći ćemo rešavajući sistem jednačina - sistem od četiri jednačine sa četiri nepoznate.

Polazeći od očekivane dobiti privog igrača u zavisnosti od strategijskog izbora drugog igrača možemo formirati sjedeći sistem jednačina

$$
\begin{aligned}
& \text { 1) } 2 \mathrm{p}_{1}-3 \mathrm{p}_{2}+4 \mathrm{p}_{3}=V \\
& \text { 2) }-3 \mathrm{p}_{1}+4 \mathrm{p}_{2}-5 \mathrm{p}_{3}=V \\
& \text { 3) } 4 \mathrm{p}_{1}-5 \mathrm{p}_{2}+6 \mathrm{p}_{3}=V \\
& \text { 4) } \mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}=1
\end{aligned}
$$

U ovom sistemu jednačina p_{1}, p_{2}, i p_{3} predstavljaju relativne učestanosti sa kojima ce prvi učesnik u igri upotrebljavati svoje ciste strategije (I_{1}, I_{2} i I_{3}) respektivno, a V predstavlja vrednot igre.

Gornji sistem jednačina rešavamo tako sto iz četvrte jednacine izračunavamo p_{3} i dobijeni izraz za p_{3} smenqujemo u prethodne tri jednacine. Posle sređivanja dobija se novi sistem jednacina

$$
\begin{aligned}
& 2 p_{1}+7 p_{2}+V=4 \\
& 2 p_{1}+9 p_{2}-V=5 \\
& 2 p_{1}+11 p_{2}+V=6
\end{aligned}
$$

Rešenje ovog sistema doredicemo pomocu determinanti. Determinanta sistema je

$$
\mathrm{D}=\left|\begin{array}{rrr}
2 & 7 & 1 \\
2 & 9 & -1 \\
2 & 11 & 1
\end{array}\right|=16 .
$$

Determinante pojedinih promenljivih imaju sledeće vrednosti

$$
\begin{gathered}
D_{1}=\left|\begin{array}{rrr}
4 & 7 & 1 \\
5 & 9 & -1 \\
6 & 11 & 1
\end{array}\right|=4 ; \quad D_{2}=\left|\begin{array}{rrr}
2 & 4 & 1 \\
2 & 5 & -1 \\
2 & 6 & 1
\end{array}\right|=8 ; \\
D_{3}=\left|\begin{array}{rrr}
2 & 7 & 4 \\
2 & 9 & 5 \\
2 & 11 & 6
\end{array}\right|=0
\end{gathered}
$$

Na osnovu izračunatih vrednosti determinaanti odredujemo vrednosti promenljivih:

$$
\begin{gathered}
p_{1}=\frac{D_{1}}{D}=\frac{4}{16}=\frac{1}{4} ; \quad p_{2}=\frac{D_{2}}{D}=\frac{8}{16}=\frac{1}{2} ; \\
p_{2}=1-p_{1}-p_{2}=1-\frac{1}{4}-\frac{1}{2}=\frac{1}{4} i \quad V=\frac{D_{3}}{D}=\frac{0}{16}=0 .
\end{gathered}
$$

Ako relativne učestanosti primene strategija $\left(\mathrm{H}_{1}, \mathrm{H}_{2} \mathrm{i} \mathrm{II}_{3}\right)$ drugog učesnika obeležimo sa $q_{1}, q_{2} q_{3}$, možemo postaviti sledeći sistem jednačina

$$
\begin{aligned}
& 2 q_{1}-3 q_{2}+4 q_{3}=V \\
& -3 q_{1}+4 q_{2}-5 q_{3}=V \\
& 4 q_{1}-5 q_{3}+6 q_{3}=v \\
& q_{1}+q_{2}+q_{3}=1
\end{aligned}
$$

Kako je već određena vrednost igre $V=0$, to nisu potrebne sve četiri jednačine već samo tri. Prema tome imamo da je

$$
\begin{aligned}
& 2 q_{1}-3 q_{2}+4 q_{3}=0 \\
& -3 q_{1}+4 q_{2}-5 q_{3}=0 \\
& q_{1}+q_{2}+q_{3}=1
\end{aligned}
$$

Rešenjem ovog sistema jednačina dobijamo da je

$$
\mathrm{q}_{1}=\frac{1}{4} ; \mathrm{q}_{2}=\frac{1}{2} ; \mathrm{q}_{3}=\frac{1}{4}
$$

Prema tome, optimalne mešovite strategije učesnika u igri su:

$$
\mathrm{S}_{\mathrm{D}_{1}}^{*}=\left(\begin{array}{lll}
\mathrm{I}_{1} & \mathrm{I}_{2} & \mathrm{I}_{3} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right) \quad \mathrm{i} \quad \mathrm{~S}_{\mathrm{D}_{2}}^{*}=\left(\begin{array}{ccc}
\mathrm{II}_{1} & \mathrm{II}_{2} & \mathrm{II}_{3} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right)
$$

pri čemu je vrednost igre $\mathrm{V}=0$,
Zaključak je da oba dečaka u 50% slučajeva treba da pruže dva prsta, a u 25% slučajeva 1 i 3 prsta. Igra je ravnopravna i očekivana dobit u igri je jednak: nuli.

Rešavanje problema primenom linearnog programiranja. U ovom slučaju polazi se od matrice cene koju treba transformisati tako da svi elementi matrice budu vecti od nule. Za koeficijenat transformacije uzzimamo $d=5$, koji dodajemo svakom elementu matrice plaćanja, posle čega se dobija nova matrica plaćanja. Pri uvođenju nove matrice treba voditi računa da će vrednost igre biti

$$
\mathrm{V}^{\prime}=\mathrm{V}+\mathrm{d}=\mathrm{V}+5
$$

STR D_{2}	I_{1}	II_{2}	II_{3}
STR S_{1}			
I_{1}	7	2	9
I_{2}	2	9	0
I_{3}	9	0	11

Igrač D_{2} nastoji da odabere svoju strategiju tako da, bez obzira na to koju je strategiju izabrao protivnik, njegovo očekivano plaćanje bude manje ili najviše jednako vrednosti igre, što matematički možemo pisati

$$
\begin{aligned}
& 7 q_{1}+2 q_{2}+9 q_{3} \leqslant V \\
& 2 q_{1}+9 q_{2}+0 q_{3} \leqslant V \\
& 9 q_{1}+0 q_{2}+11 q_{3} \leqslant V
\end{aligned}
$$

Uvođenjem novih promenljivih $\mathrm{y}_{1}=\mathrm{q}_{1} / \mathrm{V}, \mathrm{y}_{2}=\mathrm{q}_{2} / \mathrm{V}$ i $\mathrm{y}_{3}=\mathrm{q}_{3} / \mathrm{V}$ i imajući u vidu da je $q_{1}+q_{2}+q_{3}=1$, izbor optimalne strategije za igrača D_{2} svodi se na rešavanje sledećeg zadatka linearnog programiranja. Maksimizirati linearnu funkciju

$$
(\max) \phi(Y)=y_{1}+y_{2}+y_{3}=\frac{1}{V}
$$

$u z$ ograničenja

$$
\begin{aligned}
& 7 y_{1}+2 y_{2}+9 y_{3} \leqslant 1 \\
& 2 y_{1}+9 y_{2}+0 y_{3} \leqslant 1 \\
& 9 y_{1}+0 y_{2}+11 y_{3} \leqslant 1 \\
& y_{1} \geqslant 0, y_{2} \geqslant 0, y_{3} \geqslant 0 .
\end{aligned}
$$

Ovaj zadatak linearnog programiranja rešicemo pomoču simpleks tabele. Prethodno, uvođenjem izravnavajućih promenljivih gornji matematički model svodimo na kanonični oblik.

$$
\begin{gathered}
(\max) \phi(Y)=y_{1}+y_{2}+y_{3}+0 y_{4}+0 y_{6} \\
7 y_{1}+2 y_{2}+9 y_{3}+y_{4}=1 \\
2 y_{1}+9 y_{2}+0 y_{3}+y_{5}=1 \\
9 y_{1}+0 y_{2}+11 y_{3}+y_{6}=1
\end{gathered}
$$

Dalji postupak rešavanja problema prikazan je u sledeće četiri simpleks tabele ST-0, ST-1, ST-2 i ST-3.

C_{0}	B	x_{0}	1	1	1	0	0	0									
	C_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}										
0	y_{4}	1	7	2	9	1	0	0									
0	y_{5}	1	2	9	0	0	1	0									
0	y_{6}	1	9	0	11	0	0	1									
$\phi_{j}-c_{j}$											0	-1	-1	-1	0	0	0

ST 1

C_{0}	B	x_{0}	1	1	1	0	0	0
0		$2 / 9$	0	2	$4 / 9$	1	0	$-7 / 9$
0	y_{5}	$7 / 9$	0	9	$-22 / 9$	0	1	$-2 / 9$
1	y_{1}	$1 / 9$	1	0	$11 / 9$	0	0	$1 / 9$
$\phi_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$	$1 / 9$	0	-1	$2 / 9$	0	0	$1 / 9$	

C_{0}	B	x_{0}	1	1	1	0	0	0
			y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	
0	y_{4}	$4 / 81$	0	0	$80 / 81$	1	$-2 / 9$	$59 / 81$
1	y_{2}	$7 / 81$	0	1	$-22 / 81$	0	$1 / 9$	$2 / 81$
1	y_{1}	$1 / 9$	1	0	$11 / 9$	0	0	$1 / 9$
$\phi_{\mathrm{j}}-c_{j}$		$16 / 81$	0	0	$-4 / 81$	0	$1 / 9$	$7 / 91$

C_{0}	B^{*}	x_{0}	1	1	1	0	0	0
		y_{2}	y_{3}	y_{4}	y_{5}	y_{6}		
1	y_{3}	$1 / 20$	0	0	1	$81 / 80$	$-9 / 40$	$59 / 80$
1	y_{2}	$1 / 10$	0	1	0	$11 / 40$	$1 / 20$	$9 / 40$
1	y_{1}	$1 / 20$	1	0	0	$99 / 80$	$11 / 40$	$81 / 80$
$\phi_{j}-c_{j}$	$1 / 5$	0	0	0	$1 / 20$	$1 / 10$	$1 / 20$	

Na osnovu dobijenih rezultata u poslednjoj simpleks tabeli možemo pisati da

$$
\phi(Y)=\frac{1}{5}=\frac{1}{V}
$$

odakle proizilazi da je $V=5$, a vrednost igre za prvobitno definisanu matričnu igru je

$$
V=V^{\prime}-d=5-5=0
$$

Komponente vektora optimalne mešovite strategije za igrača D_{2} su:

$$
\begin{gathered}
q_{1}=y_{1} \cdot V=\frac{1}{20} \cdot 5=\frac{1}{4} ; q_{2}=y_{2} \cdot V=\frac{1}{10} \cdot 5=\frac{1}{2} ; \\
q_{3}=y_{3} \cdot V=\frac{1}{20} \cdot 5=\frac{1}{4},
\end{gathered}
$$

Prema tome, možemo pisati da je

$$
\mathrm{Q}=\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)
$$

U poslednjem redu poslednje simpleks tabele, u kolonama $y_{4}, y_{5} i y_{6}$, nalaze se rešenja za realne promenljive primarnog zadatka linearnog programiranja na osnovu kojih se određuju komponente vektora optimalne mešovite strategije za igrača D_{1}. Naime, imamo. da su

$$
x_{1}=1 / 20, x_{2}=1 / 10, x_{3}=1 / 20 .
$$

Otuda je

$$
\begin{aligned}
& p_{1}=x_{1} \cdot V=\frac{1}{20} \cdot 5=\frac{1}{4} ; p_{2}=x_{2} \cdot V=\frac{1}{10} \cdot 5=\frac{1}{2} ; \\
& p_{3}=x_{3} \cdot V=\frac{1}{20} \cdot 5=\frac{1}{4} .
\end{aligned}
$$

Prema tome, možemo pisati da je

$$
P=\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right) .
$$

Zadatak za vežbu. Ako se pođe od toga da igrac D_{1} nastoji da odabere svoju strategiju tako da, bez obzira na izbor protivnika, njegova očekivana dobit bude maksimalna ili bar jednaka vrednosti matrične igre, formulisati zadatak linearnog programiranja. Rešavajući ovako formulisan zadatak linearnog programiranja naci rešenje ove matrične igre.
22. Zadatak

Definicija zadatka. Primenom linearnog programiranja rešiti matričnu igru definisanu matricom cene (plaćanja)

$$
A=\left\|\begin{array}{rrr}
1 & 3 & 0 \\
5 & -3 & 1 \\
3 & -1 & 2
\end{array}\right\|
$$

Rešenje. Da bi našli rešenje matrične igre, definisane matricom A , primenom linearnog programiranja potrebno je matricu A transformisati u novu matricu A^{\prime}, tako da je

$$
\mathrm{A}^{\prime}=\mathrm{A}+\mathrm{d},
$$

gde je d dovoljno veliki pozitivan broj takav da posle transformacije svi elementi novodobijene matrice A^{\prime}, budu veći od nule.

Ako usvojimo da je $\mathrm{d}=3$, imaćemo

$$
A=\left\|\begin{array}{lll}
4 & 6 & 3 \\
8 & 0 & 4 \\
6 & 2 & 5
\end{array}\right\|
$$

Ovu matričnu igru posmatraćemo kao igru igračI i igrača II od kojih svaki ima po tri cista stratesijska izbora, kako je to pokazano u tabeli 1. Pri ovome se podrazumeva obično, ako se drugačije ne naglasi, da elemenat matricyA pokazuje iznos dobiti za igrača I za odgovarajući par čistih strategija.

Tabela 1

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$
$\mathrm{~A}_{1}$	4	6	3
$\mathrm{~A}_{2}$	8	0	4
$\mathrm{~A}_{3}$	6	2	5

Rešiti matričnu igru znači naći vektor optimalne mešovite strategije za igrača I i za igrača II i vrednost mešovite igre, tj . odrediti

$$
\begin{aligned}
& P=\left(p_{1}, p_{2}, p_{3}\right) ; p_{1}+p_{2}+p_{3}=1 \\
& Q=\left(q_{1}, q_{2}, q_{3}\right) ; q_{1}+q_{2}+q_{3}=1 ; i \\
& C(P, Q)=V=\sum_{i=1}^{3} \sum_{j=1}^{3} a_{i j} p_{i} q_{j} .
\end{aligned}
$$

a) Određivanje vektora mešovite strategije P

Komponente vektora mešovite strategije P možemo odrediti rešavajući sledeći problem linearnog programiranja. Traži se

$$
(\min) f(X)=x_{1}+x_{2}+x_{3}=\frac{1}{V}
$$

pri ograničenjima

$$
\begin{gathered}
4 x_{1}+8 x_{2}+6 x_{3} \geqslant 1 \\
6 x_{1}+0 x_{2}+2 x_{3} \geqslant 1 \\
3 x_{1}+4 x_{2}+5 x_{3} \geqslant 1 \\
x_{1} \geqslant 0 ; x_{2} \geqslant 0 ; x_{3} \geqslant 0
\end{gathered}
$$

Primenom simpleks metoda može se naći rešenje problema, tj. mogu se odrediti promenljive x_{1}, x_{2} i x_{3}. Na osnovu ovih rezultata izračunavamo vrednost igre

$$
V=\frac{1}{x_{1}+x_{2}+x_{3}}
$$

kao i komponente vektora mešovite strategije P,

$$
p_{1}=V \cdot x_{1} ; p_{2}=V \cdot x_{2} \text { i } p_{3}=V \cdot x_{3} .
$$

b) Određivanje vektora mešovite strategije \mathbf{Q}

Komponente vektora mešovite strategije Q możemo odrediti rešavajuci sledeći problem linearnog programiranja. Traži se

$$
(\max) \quad \phi(Y)=y_{1}+y_{2}+y_{3}=\frac{1}{V}
$$

$$
4 y_{1}+6 y+3 y_{3} \leqslant 1
$$

$$
\begin{gathered}
8 y_{1}+0 y_{2}+4 y_{3} \leqslant 1 \\
6 y_{1}+2 y_{2}+5 y_{3}<1 \\
y_{1} \geqslant 0 ; y_{2} \geqslant 0 \text { i } y_{3} \geqslant 0
\end{gathered}
$$

Primenom simpleks metoda može se naci rešenje problema, tj . mogu se odrediti promenljive $y_{1}, y_{2} i y_{3}$. Na osnovu ovih rezultata izracunavamo komponente vektora mešovite strategije \mathbf{Q},

$$
q_{1}=V \cdot y_{1} ; q_{2}=V \cdot y_{2} \text { i } q_{3}=V \cdot y_{3} .
$$

Upoređivanje matematičkog modela pod a) i b) može se uočiti da se radi o primarnom i dualnom modelu zadatka linearnog programiranja. Prema tome, da bi se dobilo rešenje matrične igre potrebno je rešiti dualni problem, čije rešenje istovremeno sadrži i rešenje primarnog problema.

U cilju rešenja problema; tj. rešenja matrične igre, matematički model pod b) svodimo na kanonični oblik, pri čemu dobijamo matematički model pogodan za rešavanje pomoću simpleks tabele.

$$
\begin{gathered}
(\max) \phi(Y)=y_{1}+y_{2}+y_{3}+0 y_{4}+0 y_{5}+0 y_{6} \\
4 y_{1}+6 y_{2}+3 y_{3}+y_{4}=1 \\
8 y_{1}+0 y_{2}+4 y_{3}+y_{5}=1 \\
6 y_{1}+2 y_{2}+5 y_{3}+y_{6}=1
\end{gathered}
$$

Postupak rešavanja problema dat je u sledecim simpleks tabelama $\mathrm{ST}-0$, ST-1iST-2.

C_{0}	B	y_{0}	1	1	1	0	0	0
0	y_{4}	1	4	6	3	1	0	0
0	y_{5}	1	8	0	4	0	1	0
0	y_{6}	1	6	2	5	0	0	1
$\Phi_{j}-C_{j}$		0	-1	1	1	0	0	0

C_{0}	B	Y_{0}	1	1	1	0	0	0
			y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
0	y_{4}	$2 / 5$	$2 / 5$	$24 / 5$	0	1	0	$-3 / 5$
0	y_{5}	$1 / 5$	$16 / 5$	$-8 / 5$	0	0	1	$4 / 5$
1	y_{3}	$1 / 5$	$6 / 5$	$2 / 5$	1	0	0	$1 / 5$
$\Phi_{\mathrm{j}}-G$		$1 / 5$	$1 / 5$	$-3 / 5$	0	0	0	$1 / 5$

C_{0}	B	Y_{0}	1	1	1	0	0	0
			y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
1	y_{2}	$1 / 12$	$1 / 12$	1	0	$5 / 24$	0	$-3 / 24$
0	y_{5}	$1 / 3$	$10 / 3$	0	0	$1 / 3$	1	-1
1	y_{3}	$1 / 6$	$7 / 6$	0	1	$-1 / 12$	0	$1 / 4$
$\Phi_{\mathrm{j}}-\mathrm{c}_{\mathrm{j}}$	$1 / 4$	$1 / 4$	0,	0	$1 / 8$	0	$1 / 8$	

Simpleks tabela ST - 2 sadrži rešenje matrične igre u celini. Naime, imamo da je

$$
\begin{aligned}
& (\min) f(X)=(\max) \phi(Y)=\frac{1}{4}=\frac{1}{V} \\
& y_{1}=0, \quad y_{2}=\frac{1}{12}, y_{3}=\frac{1}{6} \\
& x_{1}=\frac{1}{8}, \quad x_{2}=0, x_{3}=\frac{1}{8}
\end{aligned}
$$

Na osnovu ovih rezultata sračunavamo

1) Vrednost matrične igre

$$
V=V^{\prime}-d=4-3=1 ;
$$

2) Komponente vektora mešovite strategije \mathbf{Q}, gde je

$$
\mathrm{q}_{1}=\mathrm{V}^{\prime} \cdot \mathrm{y}_{1}=4 \cdot 0=0, \quad \mathrm{q}_{2}=\mathrm{v}^{\prime} \cdot \mathrm{y}_{2}=4 \cdot \frac{1}{12}=\frac{1}{3}
$$

$$
q_{3}=v^{\prime} \cdot y_{3}=4 \cdot \frac{1}{6}=\frac{2}{3}
$$

Prema tome, imamo da je vektor mešovite strategije za izgrača II

$$
\mathrm{Q}=\left(0, \frac{1}{3}, \frac{2}{3},\right) ; \mathrm{i}
$$

3) Komponente vektora mešovite strategije P, gde je

$$
\begin{gathered}
p_{1}=V^{\prime} \cdot x_{1}=4 \cdot \frac{1}{8}=\frac{1}{2}, \quad p_{2}=V^{\prime} \cdot x_{2}=4 \cdot 0=0 \\
p_{3}=V^{\prime} \cdot x^{3}=4 \cdot \frac{1}{8}=\frac{1}{2} .
\end{gathered}
$$

Prema tome, imamo da je vektor mešovite strategije za igrača I

$$
P=\left(\frac{1}{2}, 0, \frac{1}{2}\right) .
$$

Zadatak $z a$ vežbu. Prethodni zadatak rešiti svođenjem matrice A na dimenzije 3×2, a zatim grafičkom metodom odrediti vrednost matrǐ̌ne igre i vektore mešovite strategije za igrača I i igrača II.

23. Zadatak

Primenom bilinearne metode naći.optimalne strategije i vrednost matrične igre definisane matricom cene

$$
A=\left\|\begin{array}{llll}
3 & 6 & 1 & 4 \\
5 & 2 & 4 & 2 \\
1 & 4 & 3 & 5
\end{array}\right\|
$$

Pokazati da će u slučaju promene elemenata matrice A, gde se promena odnosi na elemente a_{22} i a_{24}, tako da je $a_{22}=a_{24} \geqslant 4$, rešenje matrice biti u domenu čistih strategija.

Rešenje. Na osnovu sistema ograničenja u bilinarnom modelu formira se početna tabela $\mathrm{T}-0$.

$$
\text { Tabela T - } 0
$$

	y_{1}	y_{2}	y_{3}	y_{4}	y_{m+i}
x_{1}	3	6	$\boxed{1}$	4	1
x_{2}	5	2	4	2	1
0					
x_{3}	1	4	3	5	1
$-x_{n+1}$	1	1	1	1	$F=0$
0					

Računski postupak određivanja optimalnih strategija sadrži sledeće korake:

1. Korak. - Vrši se izbor elemenata transformacije početkog rešenja koje je sadržano u tabeli $T-0$. Kriterijum za izbor ovog elementa (pivot elemenat) je maksimalni priraštaj funkcije $\mathrm{F}(\mathrm{X}, \mathrm{Y})$ po promenljivim Y , pri čemu odgovarajuća ograničenja moraju biti zadovoljena. Ovaj priraštaj sračunava se na osnovu izraza

$$
\begin{equation*}
\Delta F(X, Y)=\max _{j} \min _{i} \frac{c_{j} b_{i}}{a_{i j}}, \tag{1}
\end{equation*}
$$

gde je $c_{j}=b_{i}=1$ kako se to vidi iz tabele $T-0$. Na osnovu ovoga utvrđuje se da je elemenat transformacije rešenja a_{23}.
2. Korak. - Početnoj tabeli T - 0 dopisuju se jedinični vektori, kao što je to napred učinjeno. Na osnovu ovoga vrši se izračunavanje vrednosti elemenata tabele T-1, koja sadrži novo rešenje, tako da je

$$
\begin{equation*}
a_{i j}=a_{i j}-\frac{a_{u j} a_{i v}}{a_{u v}}, \tag{2}
\end{equation*}
$$

gde je $a_{u v}=a_{23}$. Izraz (2) primenjuje se na sve elemente tabele $T-0$. Njegovom primenom na elemente drugog reda itreće kolone ovi elementi postaju jednaki nuli pa se ovaj red i ova kolona izbacuju iz tabele. Dopisana kolona sadržavaće rešenje za promenljivu x_{2}, a dopisani red sadržaće rešenje za promenljivu y_{3}.

	y_{1}	y_{2}	y_{4}	$\mathrm{y}_{\mathrm{m}+\mathrm{i}}$	x_{2}							
x_{1}	$\frac{7}{4}$	$\frac{11}{2}$	$\frac{7}{2}$	$\frac{3}{4}$	$-\frac{1}{4}$	0						
x_{3}	$-\frac{11}{4}$	$\frac{5}{2}$	$\frac{7}{2}$	$\frac{1}{4}$	$-\frac{3}{4}$	1						
$-\mathrm{x}_{\mathrm{n}+\mathrm{j}}$	$-\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{4}$	$-\frac{1}{4}$	0						
y_{3}	$\frac{5}{4}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$								
0							-1					
							0					

3. Korak. - U ovom koraku utvrđuje se da li je dobijeno rešenje optimalno. Rešenje će biti optimalno ukoliko su svi elementi u redu - $\mathrm{x}_{\mathrm{n}+\mathrm{j}}$ manji od nule. Kako to u tabeli T-1 nije slučaj, dalji postupak određivanja optimalnog rešenja nastavlja se povratkom na korak 1. Naime, određuje se novi elemenat transformacije mogućeg rešenja dobijenog u tabeli $T-1$.

Novo moguće rešenje dato je u tabeli T $\mathbf{- 2}$.
Tabela T-2

	y_{1}	y_{4}	y_{m+1}	x_{2}	x_{3}
x_{1}	$\frac{39}{5}$	$-\frac{16}{5}$	$\frac{1}{5}$	$\frac{7}{5}$	$-\frac{11}{5}$

Dobijeno rešenje u tabeli $T-2$ nije optimalno jer je u redu $-x_{n+j}$ i koloni y_{1} elemenat veći od nule. Novo moguće rešenje dato je u tabeli T-3.

Tabela T-3

	y_{4}	y_{m+i}	x_{2}	x_{3}	x_{1}
$-x_{n+j}$	$-\frac{1}{13}$	$-\frac{4}{13}$	$-\frac{2}{13}$	$-\frac{3}{26}$	$-\frac{1}{26}$
y_{3}	$\frac{7}{13}$	$\frac{2}{13}$			
y_{2}	$\frac{37}{39}$	$\frac{5}{39}$			
y_{1}	$-\frac{16}{39}$	$\frac{1}{39}$			

Dobijeno rešenje u tabeli $T-3$ je optimalno pošto su sve vrednosti u redu $-x_{n+j}$ manje od nule.

Kako je $\mathrm{F}(\mathrm{X}, \mathrm{Y})=4 / 13=1 / \mathrm{V}$, proizilazi da je vrednost igre $\mathrm{V}=13 / 4$. U redu $-x_{n+j}$ nalaze se vrednosti za promenljive x_{i}, gde je

$$
x_{1}=\frac{1}{20}, x_{2}=\frac{2}{13} \text { i } x_{3}=\frac{3}{26} .
$$

$$
\begin{gathered}
\mathrm{p}_{1}=\mathrm{Vx}_{1}=\frac{13}{4} \frac{1}{26}=\frac{1}{8}, \quad \mathrm{p}_{2}=\mathrm{Vx}_{2}=\frac{13}{4} \frac{2}{13}=\frac{1}{2} \\
i \mathrm{p}_{3}=\mathrm{Vx}_{3}=\frac{13}{4} \frac{3}{26}=\frac{3}{8}
\end{gathered}
$$

Prema tome, vektor mešovite strategije za igrača I je

$$
\mathrm{P}=\left(\frac{1}{8}, \frac{1}{2}, \frac{3}{8}\right) .
$$

U koloni y_{m+i} nalaze se vrednosti promenljivih y_{j}, gde je

$$
y_{1}=\frac{1}{39}, \quad y_{2}=\frac{5}{39}, \quad y_{3}=\frac{2}{13} \quad \text { i } \quad y_{4}=0
$$

Na osnovu ovih vrednosti proizilazi da je

$$
\begin{gathered}
\mathrm{q}_{1}=\mathrm{Vy}_{1}=\frac{13}{4} \frac{1}{39}=\frac{1}{12}, \mathrm{q}_{2}=\mathrm{Vy}_{2}=\frac{13}{4} \frac{5}{39}=\frac{5}{12}, \\
\mathrm{i} \quad \mathrm{q}_{3}=\frac{13}{4} \frac{2}{13}=\frac{1}{2} .
\end{gathered}
$$

Prema tome, vektor optimalne mešovite strategije za igrača II je

$$
\mathrm{Q}=\left(\frac{1}{12}, \frac{5}{12}, \frac{1}{2}\right) .
$$

7. MREŽNO PLANIRANJE

7.1. UVOD

Tehnika primene mrežnog planiranja se sastoji iz zasebnih faza rada: analize strukture, analize vremena, analize troškova i isspodele resursa. Analiza strukture se uvek izvodi, a ostale faze prema potrebi. Naime, analiza vremena se ne može izvršiti dok se ne izvrši analiza strukture, dok je analiza troškoya i resursa povezana sa analizom vremena. U ovoj zbirci zadaci nisu mogli biti izdvojeni u posebne skupove po fazama rada. U jednom istom zadatku će biti tretirana i analiza strukture, analiza vremena i analiza troškova ili resursa.

Analiza strukture, tj. odredivanje tehnološke i logičke meduzavisnosti aktivnosti u mrežnom planiranju predstavlja početnu i osnovnu fazu rada. U realizaciji ove faze mrežnog planiranja moraju učestvovati odgovorni rukovodioci tehnolozi datog projekta. Ovo nije rutinski rad i mada na prvi pogled izgleda jednostavan, treba mu posvetiti dužnu pažnju.jer greške napravljene u ovoj fazi rada utiču na rezultate raḍa u svim ostalim fazama primene mrežnog planiranja. Bez obzira na ove činjenice, u ovoj zbirci problemima iz čiste analize strukture neće biti posvećen značajniji prostor. Problematika analize strukture je takve prirode da ju je nepodesno izlagati u zbirci zadataka. Drugi razlog je što je sve što je potrebno za podrobno upoznavanje sa analizom strukture izlożeno u knjizi: Operaciona istraẓivanja II - na stranicama od 99 do 131 profesora Petrića.

7.2. ANALIZA STRUKTURE

Radi ukazivanja na osnovne postavke pri konstruisanju mrežnog dijagrama daćemo nekoliko manjih primera u kojima će biti tretirana samo ova problematika.

1. Zadatak

Za aktivnosti date u tabeli 1. nacrtati mrežni dijagram. Simbol (zvezdica) na preseku vrste i kolone u šemi odnosa znači da aktivnost iz. vrste prethodi
aktivnosti iz kolone, odnosno da aktivnost navedena u koloni zavisi od aktivnosti navedene u vrsti.

Tabela 1.

Razmatrane aktivnosti Prethodne aktivnosti	A	B	C	D	E
A				$*$	$*$
B				$*$	
C					$*$
D					

Šema odnosa aktivnosti

Slika 1. Mrežni dijagram
Rešenje. U ovom primeru je bilo neophodno uvesti dve prividne aktivnosti (S_{1} i S_{2})'da bi se pravilno predstavila međuzavisnost realnih aktivnosti. Takode se, pri crtanju mrežnog dijagrama težilo da bude što manje presecanja aktivnosti (ovde ne postoji nijedan presek). Svi natpisi treba da se vrše na istom mestu u odnosu na svaku aktivnost. Tako su ovde svi simboli aktivnosti pisani na početku orijentisane duži (reprezenta aktivnosti) sa leve njene strane gledajući od početka ka završetku aktivnosti (u smeru orjentacije duži). Primenjeno je rastuće uzastopno numerisanje događaja po pravilu Fulkersona. Iz skupa celih pozitivnih brojeva [1, n] u prvom koraku najmanji se dodeljuje početnom događaju projekta. U drugom koraku se
obeležavaju sve aktivnosti koje izlaze iz numerisanog događaja (prekrižene crticom kod strelice). U trećem koraku se razmatraju svi događaji u koji ulaze obeležene (prekrižene) aktivnosti (završni događaji aktivnosti A, B i C). Stekli su pravo na numeraciju događaji u koje ulaze samo obeležene aktivnosti. (Samo završni događaji aktivnosti A , dok završni događaji aktivnosti B i C nisu stekli pravo na numeraciju, jer u njih ulaze još neobeležene aktivnosti S_{1} i S_{2}). Potom se ponavlja iteracija dodeljujući naredne brojeve, iz skupa usvojenih brojeva za numeraciju, događajima koji su stekli pravo na numeraciju u prethodnoj iteraciji (završnom događaju aktivnosti A dodeljen je broj 2). Poželjno je da brojevi događaja rastu s leva nadesno i odozgo nadole na mrežnom dijagramu. U drugom koraku obeležavaju se aktivnosti (S_{1} i S_{2}) koje izlaze iz novonumerisanih događaja (2). U trećem koraku razmatraju se završni događaji novoobeleženih aktivnosti (S_{1} i S_{2}). To su završni događaji aktivnosti B i S_{1} i aktivnosti C i S_{2}. Oba ova događaja su stekla pravo na numeraciju u sledećoj iteraciji, koja započinje dodeljivanjem ovim događajima brojeva 3 i 4 . Kome događaju će se dati broj 3, a kome broj 4, po pravilu je svejedno, ali na osnovu napred istaknute preporuke završnom događaju aktivnosti B i S_{1} je dodeljen broj 3, a završnom događaju aktivnosti C i S_{2} broj 4. Osnovni stav Fulkersonovog pravila rastućeg numerisanja je da uvek početnom događaju aktivnosti bude dodeljen manji broj nego njenom završnom događaju.

Početni događaj projekta prepoznaje se po tome što u njega ne ulaze aktivnosti, nego samo izlaze. Nasuprot, u završni događaj projekta samo ulaze aktivnosti. Početne ili nezavisne aktivnosti projekta nemaju simbola u kolonama šeme odnosa (u konkretnom primeru aktivnosti A, B i C). Završne aktivnosti projekta nemaju simbola u vrstama šeme odnosa (u konkretnom primeru aktivnosti DiE).

2. Zadatak

Nacrtati mrežni dijagram projekta čija je šema odnosa data tabelom 1. Pri numerisanju upotrebiti rastuće numerisanje sa preskocima, tj. upotrebiti samo parne brojeve [2, 2n].

Tabela 1.

Razmatrane aktivnosti	A	B	C	D	E						
Prethodne											
aktivnosti						\quad	A			$*$	
:---:	:---:	:---:	:---:	:---:							
B		$*$		$*$							
C			$*$								
D	$*$										
E											

Slika 1. Mrežni dijagram

Rešenje. Kod ovoga primera se broj ukupnih događaja odreduje deljenjem broja poslednjeg dogadaja sa korakom preskoka ($10: 2=5$). Ovo je značajno kod velikih mrežnih dijagrama gde je brojanie događaja zametan posao. Mrežni dijagram iz ovoga primera se može konstruisati korišćenjem samo dve prividne aktivnosti, ali se često koristi i treća (naročito od strane početnika), koja počinje u događaju 4 a završava se u događaju 8, te time izražava neposredno zavisnost aktivnosti C od aktivnosti D, mada je ta zavisnost izražena posredno preko prividnih aktivnosti S_{1} i S_{2}. Drugi način crtanja u principu je tačan, ali uvodi jedr u prividnu aktivnost više u mrežni dijagram, tj. komplikuje ga.

3. Zadatak

Za šemu odnosa aktivnosti datu tabelom 1. nacrtati mrežni dijagram. Numerisàti mrežni dijagram po Fulkersonovom pravilu za rastuće numerisanje. Upotrebiti neuzastopno rastuce numerisanjeqsa korakom preskoka jednakim 5.

Razmatrane aktivnosti Prethodne aktivnosti A	A	B	C	D	E	F
A					$*$	$*$
B					$*$	$*$
C				$*$		
D					$*$	
E						
F						

Slika 1. Mrežni dijagram

Rešenje. U ovom primeru su se pojavile paralelne aktivnosti. Sa logičko-tehnološkog stanovišta njihovom istovremenom odvijanju nema nikakve zamerke, ali, radi jednoznačnog obeležavanja, ne može se dozvoliti da im budu isti i početni i završni događaji. Zato je uvedena prividna aktivnost S_{1}. Ovde je korak neuzastopnosti pri numerisanju 5, te ukk pan broj događaja je $n=30: 5=6$.

4. Zadatak

Nacrtati mrežni dijagram projekta čija je šema odnosa aktivnosti data tabelom 1. Izvršiti uzastopno rastuće numerisanje koristeći pravilo Fulkersona.

Tabela 1.

Razmatrane aktivnosti	A					
Prethodne aktivnosti	B	C	D	E	F	
A				$*$	$*$	
B					$*$	$*$
C						$*$
D						
E						
F						

Slika 1. Mrežni dijagram
Rešenje. Karakterističnost ovog problema je da se zavisnost aktivnosti E od aktivnosti A i B može pravilno prikazati samo ako se uvede poseban događaj za početni događaj aktivnosti E, odnosno postoji događaj u koji ulaze samo prividne aktivnosti.

5. Zadatak

Naknadno je ustanovlieno da u projektu iz 4. zadatka treba obaviti još dve aktivnosti (G i H), tako da prva od njih (G) može početi čim se završi aktivnost C, ali ne može početi aktivnost E dok se ne završi ova nova aktivnost. Druga od ovih aktivnosti (H) može početi po završetku aktivnosti G, a od nje ne zavisi nijedna aktivnost. Nova šema odnosa data je tabelom 1, a njoj odgovarajući mrežni dijagram slikom 1.

Tabela 1

Razmatrane aktivnosti Prethodne aktivnosti	A	B	C	D	E	F	G	H
A				$*$	$*$			
B					$*$	$*$		
C						$*$	$*$	
D								
E								
F								
G					$*$			$*$
H								

Rešenje. Da bi bio ispunjen odnos $\mathrm{i}<\mathrm{j}$ za svaku aktivnost ($\mathrm{i}-\mathrm{j}$) morao se crtati novi mrežni dijagram. Međutim, da je mrežni dijagram na slici 1. bio numerisan sa preskocima, recimo samo parnim brojevima, onda bi se mogle naknadno uneti aktivnosti G i H , a da se ne crta novi mrežni dijagram. To je pokazano slikom 2. Ovo je značajno kod naknadne dopune velikih mreżnih dijagrama, gde su za crtanje novog mrežnog dijagrama potrebni značajno vreme i materijalni izdaci. Numerisanjem završnog događaja aktivnosti G sa brojem 9 obezbedilo se da za aktivnosti G, H i S_{4} bude početni dogadaj numerisan manjim brojem nego njihov završni događaj, a da ne bude crtan novi mrežni dijagram. U ovome se ogleda prednost neuzastopnog numerisanja.

Slika 2.

6. Zadatak

Za Šemu odnosa datu tabelom 1. nacrtati mrežni dijagram i numerisati ga uzastopnim rastućim numerisanjem primenjujuci pravilo Fulkersona.

Rešenje. Mrežni dijagram je nacrtan na slici 1. bez ikakvih teškoća. PokuŠajmo ga numerisati primenom uzastopnog rastućeg numerisanja po pravilu Fulkersona, tj. upotrebimo za numerisanje skup celih pozitivnih brojeva [$1, \mathrm{n}$]. U prvom koraku dodeljuje se početnom događaju projekta broj 1. U drugom koraku obeležavaju se sve aktivnosti koje izlaze iz događaja 1 . To su aktivnosti A, B iC.

U trećem koraku razmatraju se završni događaji svih obeleženih aktivnosti. U zavišne događaje aktivnosti B i C ulaze samo obeležene aktivnosti, te se ti događaji numerišu brojevima 2 i 3 . Obeležavaju se sve aktivnosti koje izlaze iz dogadaja 2 i 3. To su aktivnosti S_{1}, E i F. Potom se razmatraju događaji u koje ulaze ove

Tabela 1

Razmatrane aktivnosti Prethodne aktivnosti	A	B	C.	D	E	F	G	H	I	J	K	L	M	N
A				*										
B				*	*									
C						*								
D										*	*			
E								*						
F							*							*
G								*						
H									*				*	
I										*	*			
< J							*							*
$\therefore \quad \mathrm{K}$												*		
$\because \quad \mathrm{L}$														
M														
N														

aktivnosti. Jedino je završni događaj aktivnosti $\mathbf{S}_{\mathbf{1}}$ stekao pravo na numeraciju i dodeljen mu je broj 4. Nastavlja se sa obeležavanjem aktivnosti koje izlaze iz događaja 4. To je aktivnost D. Razmatra se završni događaj aktivnosti D. On ne može biti numerisan sledecim brojem, jer u njega ulazi i aktivnost I koja nije još obeležena. Kako nema više događaja koji su stekli pravo na numeraciju, to znači da se ne može do kraja numerisati ovaj mrežni dijagram. To ujedño ukazuje da u ovom mrežnom dijagramu postoji kružni put (petlja), a to je i bio cilj ovoga primera. Taj kružni put sačinjavaju aktivnosti $\mathbf{G}-\mathbf{H}-\mathrm{I}-\mathrm{J}-\mathrm{G}$. On se lako uoČava na mrežnom dijagramu, jer je ovaj mrežni dijagram relativno mali i aktivs:osti kružnog puta predstavljaju približno $\mathbf{3 0 \%}$ ukupnog broja aktivnosti. Mnogo teže je vizuelno vočiti kružni put na velikom mrežnom dijagramu. Razinatrajući aktivnosti kružnog puta dolazi se do zakliucka da je aktivnost \mathbf{G} istovremeno i prethodna i narecina aktivnost aktivnostima H-I - J. Ovo je

Slika 1.
logičko-tehnološki nemoguce, jer se svaki projekat mora vremenski odvajati unapred ako ima svoj početak i završetak.

Znači, ako se u mrežnom dijagramu pojavi kružni put, onda se ne može do kraja sprovesti rastuce numerisanje po pravilu Fulkerskona. Drugim rečima, Fulkersonovo pravilo rastuceg numerisanja uspešno otkriva kružne puteve u mrežnom dijagramu.

7.3. ANALIZA VREMENA I TROŠKOVA - METODÁ KRITIČNOG PUTA -

7. Zadatak

Za projekat ${ }_{\text {cija }}$ je lista aktivnosti data u tabeli 1 :
a) nacrtati mrežni dijagram i numerisati isti rastućim uzastopnim numerisanjem po pravilu Fulkersona;
b) izvršiti analizu vremena pri normalnom trajanju aktivnosti;
c) odrediti kritični put pri usiljenom trajanju aktivnosti;
d) odrediti direktne troškove projekta pri normalnom i usiljenom trajanju aktivnosti i jedinični priraštaj direktnih troškova za svaku aktivnost;
e) odrediti najmanje moguće direktne troškove projekta pri trajanju projekta jednakom dužini usiljenog kritičnog puta.

Rešenje:
a) Mrežni dijagram je dat na lslici 1 . Isti je numerisan uzastopnim rastućim numerisanjem primenom pravila Fulkersona. Ukupno ima 9 događaja. Sa leve strane aktivnosti (gledano u smeru odvijanja aktivnosti) nanete su oznake aktivnosti.

Aktivnost		Trajanje (v.j.)		Direktni troškovi	
oznaka	zavisi od	normalno t_{11}	$\begin{gathered} \text { usiljeno } \\ t_{u} \end{gathered}$	$\begin{gathered} \text { normalno } \\ C_{n} \end{gathered}$	usiljeno Cu_{u}
A	nezavisna	10	5	150	300
B	A	6	3	170	290
C	A	6	4	270	330
D	A	10	5	350	700
E	B	4	1	150	300
F	C	20	10	700	1200
G	C	3	1	300	360
H	D	14	7	400	820
1	1)	22	15	500	990
J	G. H	4	3	$\therefore 00$	300
K	G.H.	10	5	500	1000
L	E, F, J	8	8	700	700
M	I	5	2	240	480

Slika 1
b) Analiza vremena počinje određivanjem najranijeg nastupanja događaja po

$$
\begin{aligned}
t_{j}^{(0)}=\max _{i} & \left\{t_{i}^{(0)}+\left(t_{e}\right)_{i j}\right\}, \text { za } j=2,3, \ldots, n \\
& \text { usvojeno je } t_{1}^{(0)}=0
\end{aligned}
$$

Ova vremena su unesena u levim (prednjim) kvadrantima krugova (predstavnika događaja) mrežnog dijagrama na slisci 2. Takođe su data u tabeli 2 . U donjem kvadrantu kruga upisan je broj početnog događaja aktivnosti na osnovu koje je određeno najranije nastupanje događaja.

Kao drugi korak u analizi vremena određuje se najkasnije nastupanje događaja koristeći se izrazom

$$
\begin{gathered}
t_{i}^{(1)}=\min _{j}\left\{t_{j}^{(1)}-\left(t_{e}\right)_{i j}\right\}, \quad \text { za } i=n-1, n-2, \ldots, 2,1, \\
\text { usvojeno je } \quad t_{n}^{(1)}=t_{n}^{(0)} .
\end{gathered}
$$

Ova vremena su unesena u desne kvadrante krugova mrežnog dijagrama na slici 2, a takođe su data u zadnjoj koloni tabele 2.

U mrežnom dijagramu na slici 2 . sa leve strane orijentisanih duži nanete su oznake aktivnosti i normalno trajanje aktivnosti u vremenskim jedinicama, u gornjim kvadrantima krugova brojevi odgovarajućih događaja. Kritični put pri normalnom trajanju aktivnosti je naznačen punim linijama.

Slika 2.

Kritǐni put se određuje kao treci korak u analizi vremena. Može se odrediti po oređivanju najranijeg nastupanja ${ }_{193}$ događaja, na taj način sto se polazi od
završnog događaja i ide preko događaja čiji su brojevi upisani u donjim kvadrantima krugova dok se ne stigne do početnog događaja. U našem primeru polazi se od događaja 9 i ide na događai 7 , jer je u donjem kvadrantu kruga koji predstavlja događaj 9 ubeležen broj 7 . Od događaja 7 ide se preko događaja 3 i 2 do događaja 1 . Znači kritični put sacinjavaju aktivnosti A-D-I-M. Trajanje kriticnog puta iznosi 47 vremenskih jedinica.

Naravno, kada se odredi najkasnije nastupanje događaja, onda to vreme služi za proveru ili određivanje kritičnog puta, jer za događaje na kritičnom putu moraju biti ista vremena najranijeg i najkasnijeg nastupanja.

Vremenske rezerve se određuju na sledeći način.
Ukupna vremenska rezerva aktivnosti ($\mathrm{i}-\mathrm{j}$) određuje se korišénjem izraza

$$
\left(S_{t}\right)_{i j}=t_{j}^{(1)}-t_{i}^{(0)}-t_{i j}
$$

Slobodna vremenska rezerva prve vrste ili prethodna slobodna vremenska rezerva određuje se kao

$$
\left(S_{s}^{\prime}\right)_{i j}=t_{j}^{(0)}-t_{i}^{(0)}-t_{i j}
$$

Slobodnu vremenska rezerva druge vrste ili naredna slobodna vremenska rezerva određuje se po izrazu

$$
\left(S_{s}^{\prime \prime}\right)_{i j}=t_{j}^{(1)}-t_{i}^{(1)}-t_{i j} .
$$

Nezavisna vremenska rezerva određuje se po izrazu

$$
\left(S_{n}\right)_{i j}=t_{j}^{(0)}-t_{i}^{(1)}-t_{i j} .
$$

Vremenska rezerva događaja ili uslowna vremenska rezerva određuje se koristeci se izrazom

$$
S_{i}=t_{i}^{(1)}-t_{i}^{(0)}
$$

U gornjim izrazima su:

$\mathbf{t}_{\mathbf{i j}}$ - trajanje aktivnosti (i-j);
$t^{(0)}$ - najranije nastupanje dogataja i ili najraniji početak aktivnosti (i-j);
$\mathbf{t}_{\mathbf{i}}^{(\mathbf{1})}$ - najkasnije nastupanje događaja i, ili najkasniji početak aktivnosti (i-j);
$\mathbf{t}_{j}^{(0)}$ - najranije nastupanje dogadaja j;
$\mathbf{t}_{\mathbf{j}}^{(\mathbf{1})}$ - najkasnije nastupanje događaja j_{194} ili najkasniji završetak aktivnosti (i-j).

Vrednosti svih vremenskih rezervi date su u tebeli 2. U tabeli 2. nije navedena vremenska rezerva zavrànog (devetog) dogadaja, ali kako ovaj dogadaj mora biti na kritienom putu, to i njegova vremenska rezerva mora biti jednaka muli.

Tabela 2

Aktivnost			Početni događaj		Završni događaj		Vremenske rezerve				
oznaka	1-j	$\mid \text { trajanje } \mid$	$\mathrm{H}^{(0)}$	$t^{(1)}$	$4^{(1)}$	${ }_{(S t}{ }_{\text {t }}{ }_{\text {ij }}$				$\left(\mathrm{S}_{\mathrm{n}} \mathrm{hlj}\right.$	s_{i}
A	1-2	10	0	0	10	10	0	0	0	0	0
B	2-5	6	10	10	16	35	19	0	19		-
c	2-4	6	10	10	:6	19	3	0	3	0	0
D	2-3	10	10	10	20	20	0	0	0	0	0
E	5-8	4	16	35	38	39	19	18	0	-1	19
F	4-8	20	16	19	38	39	3	2	0	-1	3
G	4-6	3	16	19	34	35	16	15	13	12	3
H	3-6	14	20	20	34	35	1	0	1	0	0
	3-7	22	20	20	42	42	0	0	0	0	0
J	6-8		34	35	38	39	1	0	0	-1	1
K	6-9	10	34	35	47	47	3	3		2	1
1	8-9	8	38	39	47	47	1	1	0	0	1
M	7-9	5	42	42	47	47	0	0	0	0	0

c) Analiza vremena pri usiljenom trajanju aktivnosti vrsi se kao i pri normalnom trajanju. Naravno, primenjuju se isti izrazi i postupci samo se racuna sa usiljenim trajanjem aktivnosti. Za ovu analizu smo koristili mrez̆ni dijagram sa slike 3. Sa leve strane aktivnosti date su njihove oznake i usiljeno trajanje. U levim kvadrantima su unešeni najraniji počeci događaja, a u desnim najkasniji počeci. Kritični put pri usiljenom trajanju aktivnosti ucrtan je dvostrukim linijama.

SGlika 3.

Kritične aktivnosti pri usiljenom trajanju su A-D-H-J-L, odnosno kritični događaji su 1-2-3-8-9. Kritičan put pri usiljenom trajanju aktivnosti iznosi 28 vremenskih jedinica. Ova vrednost je data u poslednjoj vrsti kolone za $t_{u} u$ tabeli 3.

d) Dìrektni troškovi projekta se dobijaju kada se saberu direktni troškovi svih aktivnosti projekta. Tako za normalno trajanje aktivnosti direktni troskovi projekta iznose 4630 novčanih jedinica, što je dato u poslednjoj vrsti tabele 3. u koloni za C_{n}. Direktni troškovi projekta pri usiljenom trajanju aktivnosti dobijeni sul sabiranjem vrednosti kolone za $\mathrm{C}_{\mathrm{u}} \mathrm{u}$ tabeli i dati su u poslednjoj vrsti.

Priraštaj direktnih troškova za jedinicu skraćenja vremena odvijaju aktivnosti (jednačini direktni troškovi aktivnosti) određeni su, uz pretpostavku da linearno rastu pri skracenju trajanja aktivnosti od normalnog do usiljenog, na osnovu izraza

$$
-\Delta C=\left|\frac{C_{u}-C_{n}}{t_{u}-t_{n}}\right|,
$$

gde su:
$\Delta \mathrm{C}$ - jedinični direktni troškovi aktivnosti;
C_{u} - direktni troškovi aktivnosti pri usiljenom trajanju;
$\mathrm{C}_{\mathbf{n}}$ - direktni troškovi aktivnosti pri normalnom trajanju;
t_{u} - usiljeno trajanje aktivnosti;
t_{n} - normalno trajanje aktivnosti.

Vrednosti jediničnih troškova date su u tabeli 3. i nanesene sa desne strane aktivnosti mrežnog dijagrama na slici 4.

Slika 4
Na mrežnom dijagramu sa slike 4. sa leve strane aktivnosti su naneseni podaci: oznaka aktivnosti, normalno trajanje aktivnosti i (u malim zagradama) usiljeno trajanje aktivnosti. U pojedinim kvadrantima su uobičajeni podaci.
f) Najmanji moguci dirèktni troškovi pri usiljenom trajanju projekta određuju se na sledeči način:

Tabela 3.

Aktivnosti		Trajanje		Direktni troškovi		
oznaka	$i-j$	t_{n}	t_{u}	C_{n}	C_{u}	ΔC
A	$1-2$	10	5	150	300	30
B	$2-5$	6	3	170	290	40
C	$2-4$	6	4	270	330	30
D	$2-3$	10	5	350	700	70
E	$5-8$	4	1	150	300	50
F	$4-8$	20	10	700	1200	50
G	$4-6$	3	1	300	360	30
H	$3-6$	14	7	400	820	60
I	$3-7$	22	15	500	990	70
J	$6-8$	4	3	200	300	100
K	$6-9$	10	5	500	1000	100
L	$8-9$	8	8	700	700	$*$
M	$7-9$	5	2	240	480	80

1. iteracija. Bira se na kritičnom putu aktivnost sa najmanjim priraštajem jedinicnih troßkova i skracuje se najvise ŝto je moguce, tj . do njenog usiljenog trajanja ili do pojave nowog kritičnog puta. Sa mrežnog dijagrama na slici 4. vidi se da je najjeftinije skracivati kritixnu aktivnost $A\left(\Delta C_{A}=30\right.$ v.j.). Kako je ova aktivnost sastavni elemenat svih puteva, to se može skratiti do njenog usiljenog trajanja, tj. do 5 vremenskih jedinica. Ovo izaziva i skracenje trajanja projekta za $\Delta t_{1}=5 \mathrm{v} . j$, sto daje:

- trajanje projekta $T_{1}=T_{n}^{(1)}-\Delta t_{1}=47-5=42$ v.j.
- trožkove projekta $C_{1}=C_{n p}+\Delta t_{1} \cdot \Delta C_{A}=4630+5 \cdot 30=4780 \mathrm{n} . \mathrm{j}$.

Stanje posle iteracije je predstav'jeno mrežnim dijagramom na slici 5 .
2. iteracija. Kritične aktivnosti D i I imaju iste jıdinične troškove, ali se odabira aktivnost D , jer se ona može skratiti za $3 \mathrm{v} . \mathrm{j}$. do pojave novog kritičnog puta preko aktivnosti $\mathrm{A}-\mathrm{C}-\mathrm{F}-\mathrm{L}$, a skraćivanje aktivnosti I za $1 \mathrm{v} . j$. izaziva pojavu novog kritič̣nog puta. Znači, u drugoj iteracijii usvaja se $\Delta \mathrm{t}_{2}=3$ v.t. To daje:

- trajanje projekta $T_{2}=T_{1}-\Delta t_{2}=42-3=39 \mathrm{v} . j$.
- troškovi projekta $C_{2}=C_{1}+\Delta t_{2} \cdot \Delta C_{D}=4780+3 \cdot 70=4990 \mathrm{n} . j$.

Slika 5
Stanje posle ove iteracije predstavljeno je mrežnim dijagramom na slici 6.

Slika 6.
3. iteracija. Sada se moraju za isti iznos skratiti oba kritična puta. Da bi se skratio novonastali kritiěni put najjeftinije je skratiti aktivnost C, a za skracénje već postojećeg kritiěnog puta opet je najpodesnije skratiti aktivnost D. Skracivanje ce se izvrsiti do usiljenog trajanja i aktivnosti C i aktivnosti D, tj. za 2 vremenske jedinice ($\Delta \mathrm{t}_{3}=2 \mathrm{v} . \mathrm{j}$.). Radi uveravanja da je ovo skracivanje moguce obaviti, dovoljno je proveriti da se ne pojavljuje ranije kritični put preko aktivnosti BiE. Međutim, očigledno je da se ne pojavljuje. Ovo skraćivanje daje:

- trajanje projekta $T_{3}=T_{2}-t_{3}=39-2=37 \mathrm{v} . j$.
- troskovi projekta $C_{3}=C_{2}+t_{3}\left(C_{c}+C_{D}\right)=4990+2(70+30)=5190$.

Stanje posle ove iteracije je predstavljeno mrežnim dijagramom na slici 7.

Slika 7.
4. iteracija. Da bi se dalje skratila oba kritična puta, najpodesnije je skratiti aktivnosti E i I. Mogu se skratiti samo za 1 vremensku jedinicu, jer se preko aktivnosti $H-J-L$ pojavljuje tada novi kritični put. Sada je $\Delta t_{4}=1$ v. j. sto daje:

$$
\begin{aligned}
- \text { trajanje projekta } T_{4} & =T_{3}-\Delta t_{4}=37-1=36 \mathrm{v} . j \\
- \text { troskovi projekta } C_{4} & =C_{3}+\Delta t_{4}\left(\Delta C_{F}+\Delta C_{I}\right)= \\
& =5190+1(50+70)=5310 \mathrm{n} . j
\end{aligned}
$$

Stanje posle ove iteracije je predstavljeno mrežnim dijagramom na slici 8 .

5. iteracija. Sada postoje tri kritična puta: prvi $A-D-I-M$, drugi A-D-H-J-L i treci A-C-F-L. Da bi se skratili ovi kritični putevi najpodesnije je skratiti aktivnosti F, HiI. Kada se skraćuje aktivnost F mora se voditi računa o pojavi kritičnog puta preko aktivnosti E ili preko G i J. Kada se skraćuje aktivnost H , mora se voditi računa o pojavljivanju kritičnosti preko G , dok pri skracivanju aktivnosti I, treba obratiti pažnju na aktivnost K, ali je ona za sada daleko od kritičnosti. Skraćivanje izvršiti do usiljenog trajanja aktivnosti I, tj. za 6 v. j. Sada je $\Delta \mathrm{t}_{5}=6 \mathrm{v}$. j. sto daje:

- trajanje projekta $T_{5}=T_{4}-\Delta t_{5}=36-6=30 \mathrm{v} . j$.
- troškovi projekta $C_{5}=C_{4}+\Delta t_{5}\left(\Delta C_{H}+\Delta C_{I}\right)=$

$$
=5310+6(50+60+70)=6390 \mathrm{n} . \mathrm{j} .
$$

Stanje posle 5. iteracije predstavljeno je mrežnim dijagramom na slici 9 .

Slika 9.
6. iteracija. Opet su ostala tri ista kritǐ̌na puta. Skracuju se aktivnosti F, H i M. Ovde je granicu skraćivanja uslovilo usiljeno trajanje aktivnosti H. Tako imamo $\Delta \mathrm{t}_{6}=1 \mathrm{v} . j$, što daje:

- trajanje projekta $T_{6}=T_{5}-\Delta t_{6}=30-1=29 \mathrm{v} . j$.
- troškovi projekta $C_{6}=C_{5}+\Delta t_{6}\left(\Delta C_{F}+\Delta C_{H}+\Delta C_{M}\right)=$

$$
=6390+1(50+60+80)=6580 \mathrm{n} . \mathrm{j} .
$$

Stanje posle ove iteracije je predstavljeno mrežnim dijagramom na slici 10.

Slika 10.
7. iteracija. U ovoj iteraciji treba skratiti aktivnosti F, JiMito samo za $. \Delta t_{7}=1 \mathrm{v} . j$, jer toliko je potrebno do kritičnog puta pri usiljenom trajanju aktivnosti. Uostalom, aktivnost J ne možemo skratiti za veći iznos. Sada je:

- trajanje projekta $\mathrm{T}_{7}=\mathrm{T}_{6}-\Delta \mathrm{t}_{7}=29-1=28 \mathrm{v} . j$.
- troškovi projekta $\mathrm{C}_{7}=\mathrm{C}_{6}+\Delta \mathrm{t}_{7}\left(\Delta \mathrm{C}_{\mathrm{F}}+\Delta \mathrm{C}_{\mathrm{J}}+\Delta \mathrm{C}_{\mathrm{M}}\right)=$

$$
=6580+1(50+100+80)=6810 \mathrm{n} . \mathrm{j} .
$$

Stanje posle sedme iteracije, i ujedno pri najkraćem mogućem trajanju projekta, predstavljeno je mrežnim dijagramom na slici 11

Rezultat ukazuje da se projekat može izvrsiti u vremenu trajanja usiljenog kritǐnog puta, a da troskovi projekta budu 6810, umesto 7770 novčanih jedinica, koliko je dobijeno. pri sabiranju troskova pojedinih aktivnosti pri usiljenom trajanju. Nesumnjivo, ovo predstavlja značajnu uštedu. Kako je ostvarena ova ušteda? Ostvarena je na taj nacin sto je postignuto da ceo projekat usiljeno traje, a da sve aktivnosti ne budu svedene na usiljeno trajanje. Sve one aktivnosti, kod kojih je veci broj odmah posle oznake od onoga u zagradi na mretinom dijagramu sa slike 11, nisu svedene na usiljeno trajanje. One su i doprinele uštedi, jer bilo bi besmisleno placati njihovo skracivanje do usiljenog trajanja kada to ne moze dovesti do skracenja celog projekta. U ovom primeru je uštedeno na sledecim aktivnostima:
> aktivnost B, usteda $3 \times 40=120 \mathrm{n} . \mathrm{j}$. aktivnost E, ušteda $3 \times 50=150 \mathrm{n}$. j . aktivnost F, usteda $1 \times 50=50 n . j$. aktivnost G, ušteda $2 \times 30=60 \mathrm{n} . \mathrm{j}$. aktivnost K, usteda $5 \times 100=500 \mathrm{n} . \mathrm{j}$. aktivnost M, ušteda $1 \times 80=80 \mathrm{n} . j$.

> Ukupna ušteda $=960 \mathrm{n} . \mathrm{j}$.

Ukupna ušteda odgovara razlici između troskova pri usiljenom trajanju svih aktivnosti i optimalnih troškova pri usiljenom trajanju projekta, tj. 7770 n.j. $6810 \mathrm{n} . \mathrm{j} .=960 \mathrm{n} . \mathrm{j}$.

Kod praktične primene analize vreme - troškovi ne moraju se crtati mrežni dijagrami posle svake iteracije. Dovoljno je na vec postojećem mrežnom dijagramu na podesan način izmeniti brojeve koji oznaČavaju trajanje aktivnosti koje se skraćuju i izmeniti one brojeve koji se menjaju usled ovog skracivanja. Takođe je potrebno obeležiti nove kritične puteve. Posebno je podesno različitim bojama naznaciti novo stanje posle iteracija.

Mada je kod velikih mrežnih dijagrama teško navesti sve puteve, može se izvršiti analiza troškova tabelarno navodeći sve puteve mrežnog dijagrama. To je urađeno pomoću tabele 4.

U tabeli 4. kritični putevi su obeleženi dopisivanjem slova $\mathrm{K} u z$ trajanje istih. Simbolično pisanje ispod iteracija, na primer A: $10 \rightarrow 5$ v.j. znači da je u prvoj iteraciji aktivnost A skracena sa 10 na 5 vremenskih jedinica. Ispod oznake za skraćivanje aktivnosti navedeni su direktni troškovi projekta, posle te iteracije, odnosno posle datog skracenja.

Red. broj puta	Sastav puta	Trajanje puta		Iteracije						
		Trajanje		1.	2.	3.	4.	5.	6.	7.
		normalno	usijano	$\mathrm{A}: 10 \rightarrow 5$	$\mathrm{D}: 10 \rightarrow 7$	C: $6 \rightarrow 4$ D: $7 \rightarrow 5$	$\begin{aligned} & \mathrm{I}: 22 \rightarrow 21 \\ & \mathrm{~F}: 20 \rightarrow 19 \end{aligned}$	$\mathrm{H}: 14 \rightarrow 8$ $\mathrm{~F}: 19 \rightarrow 13$ $\mathrm{I}: 21 \rightarrow 15$	F: $13 \rightarrow 12$ H: $8 \rightarrow 7$ M: $5 \rightarrow 4$	$\mathrm{F}: 12 \rightarrow 11$ $\mathrm{~J}: 4 \rightarrow 3$ $\mathrm{M}: 4 \rightarrow 3$
				$C_{1}=4780$	$\mathrm{C}_{2}=4990$	$\mathrm{C}_{3}=5190$	$\mathrm{C}_{4}=5310$	$\mathrm{C}_{5}=6390$	$\mathrm{C}_{6}=6580$	$C_{7}=6810$
I	A-D-I-M	47 K	27	42K	39K	37K	36K	30K	29K	28K
II	A-D-H-K	44	22	39	36	34	34	28	27	27
III	$\mathrm{A}-\mathrm{D}-\mathrm{H}-\mathrm{J}-$	46	28K	41	38	36	36K	30K	29 K	28K
IV	$\mathrm{A}-\mathrm{C}-\mathrm{G}-\mathrm{K}$	29	15	24	24	22	22	22	22	22
V	$\mathrm{A}-\mathrm{C}-\mathrm{G}-\mathrm{J}-$	31	21	26	26	24	24	24	24	23
VI	$\mathrm{A}-\mathrm{C}-\mathrm{F}-\mathrm{L}$	44	27	39	39K	37 K	36K	30 K	29K	28 K
VII	A-B-E-L	28	17	23	23	23	23	23	23	23

7.4.ANALIZA VREMENA I TROŠKOVA
 - PERT METODA -

8. Zadatak

Analizom strukture projekta ustanovljena su karakteristična svojstva aktivnosti koja su data u tabeli 1 .

Tabela 1

Aktivnost	Zavisi od	Trajanje (v.j.)				Direktni trošk. (n.j.)	
			a_{ij}	m_{ij}	b_{ij}	$\mathrm{C}_{\mathrm{nij}}$	
A	nezavisna	3	6	9	110	320	
B	$"$	5	5	5	250	250	
C	$"$	1	4	7	50	200	
D	A	2	5	5	100	250	
E	A	1	2	6	50	110	
F	B,C,E	3	5	7	150	250	
G	C	4	4	6	200	250	
H	D	6	6	6	300	300	
I	D	3	3	3	150	150	
J	F	1	2	6	100	260	
K	F,G	1	2	3	200	200	
L	I,J	4	6	8	400	400	
M	I,J	1	1	1	100	100	
N	K, M	1	4	4	80	280	

U tabeli simboli imaju sledeçe značenje:
$a_{i j} \quad-\quad$ optimisticko vreme izvršenja aktivnosti $(i-j)$;
b_{ij} - pesimističko vreme izvršenja aktivnosti $(\mathrm{i}-\mathrm{j})$;
$\mathrm{m}_{\mathrm{j}} \quad$ - najverovatnije vreme izvrsenja aktivnosti ($\mathrm{i}-\mathrm{j}$);
$\mathrm{C}_{\text {nij }}$ - direktni troskovi pri normalnom vremenu izvršenja aktivnosti ($\mathrm{i}-\mathrm{j}$);
$\mathrm{C}_{\mathbf{u} j}$ - direktni troškovi pri usiljenom vremenu izvršenja aktivnosti ($\mathbf{i}-\mathrm{j}$);
v. j. - vremenska jedinica;
n. j. - novčana jedinica.

Pod pretpostavkom da je normalno vreme izvrsenja jednako očekivanom vremenu izvrక̌enja, a usiljeno vreme izvršenja jednako optimističkom vremenù tzvršenja aktivnosti, izvršiti sledece:
a) Nacrtati mrežni dijagram projekta;
b) Numerisati događaje mrežnog dijagrama prema pravilu Fulkersona za rastuce uzastopno numerisanje;
c) IzvrSiti analizu vremena projekta;
d) Odrediti kritičan put i subkritičan put prve i druge vrste pri norma:nom vremenu izvršenja aktivnosti;
e) Odrediti kritičan put pri usiljenom vremenu izvršenja aktivnosti;
f) Odrediti verovatnoće nastupanja završnog događaja projekta posle 15;20 i 25 vremenskih jedinica;
g) Odrediti optimalne direktne troškove projekta pod uslovom da vreme izvršenja projekta treba svesti na srednju vrednost između normalnog i usiljenog vremena izvršenja projekta.

Rešenje:

a) Mrežni dijagram je dat na slici 1 . Sa leve strane orijentisane duži, računajući od početka ka završetku, naneseni su: oznaka aktivnosti, optimističke, najverovatnije i pesimističko vreme izvršenja aktivnosti.
b) Numerisanje mrežnog dijagrama rastučim uzastopnim numerisanjem, tj. korišcenjem skupa celih pozitivnih brojeva [$1, \mathrm{n}$], pridržavajuci se pravila Fulkersona, dato je takođe na slici 1.
c) Analiza vremena počinje određivanjem očekivanog vremena izvršenja aktivnosti.

$$
\left(t_{e}\right)_{i j}=\frac{a_{i j}+4 m_{i j}+b_{i j}}{6},
$$

Slika 1
gde je:

$$
\left(t_{e}\right)_{i j}-\text { očekivano vreme izvršenja aktivnosti }(i-j) ;
$$

$\mathrm{a}_{\mathrm{ij}} \quad$ - optimističko vreme izvršenja aktivnosti $(\mathrm{i}-\mathrm{j})$;
m_{ij} - najverovatnije vreme izvrŠenja aktivnosti $(\mathrm{i}-\mathrm{j})$;
$\mathrm{b}_{\mathrm{ij}} \quad$ - pesimističko vreme izvršenja aktivnosti $(\mathrm{i}-\mathrm{j})$.
Rezultati dobijeni za $\left(t_{e}\right)_{i j}$ dati su u tabeli 2. i naneseni sa leve strane aktivnosti na mrežnom dijagramu sa slike 2 . Vrednosti su date u vidu razlomaka sa imeniocem 6 , radi lakšeg međusobnog poređenja.

Kao druga veličina u analizi vremena određuje se disperzija vremena izvršenja aktivnosti - varijansa.

$$
\left(\delta^{2}\right)_{\mathrm{ij}}=\left(\frac{\mathrm{b}_{\mathrm{ij}}-\mathrm{a}_{\mathrm{ij}}}{6}\right)^{2},
$$

gde je:
$\left(\delta^{2}\right)_{\mathrm{ij}}-$ varijansa vremena trajanja aktivnosti $(\mathrm{i}-\mathrm{j})$;
$\mathrm{a}_{\mathrm{ij}} \quad-\quad$ optimističko vreme izvršenja aktivnosti $(\mathrm{i}-\mathrm{j})$;
$\mathrm{b}_{\mathrm{ij}} \quad$ - pesimističko vreme izvršenja aktivnosti $(\mathrm{i}-\mathrm{j})$.

Dobijene vrednosti za varijansu su date u tabeli 2. i nanesene na mrežnom dijagramu na slici 2. za svaku aktivnost sa njene desne strane. Vrednosti su date u vidu razlomaka sa imeniocem 36, radi lakšeg međusobnog poređenja.

Kao treci korak u analizi vremena određuje se najranije vreme nastupanja događaja.

$$
\left(\mathrm{T}_{\mathrm{E}}\right)_{\mathrm{j}}=\max _{\mathrm{i}}\left\{\left(\mathrm{~T}_{\mathrm{E}}\right)_{\mathrm{i}}+\left(\mathrm{t}_{\mathrm{e}}\right)_{\mathrm{ij}}\right\} ; \mathrm{j}=2,3, \ldots, \mathrm{n}
$$

$$
\text { usvaja se }\left(\mathrm{T}_{\mathrm{E}}\right)_{1}=0 .
$$

Ovde je:
$\left(\mathrm{T}_{\mathrm{E}}\right)_{\mathrm{j}}$ - najranije nastupanje događaja j ;
$\left(T_{E}\right)_{i}$ - najranije vreme nastupanja događaja i;
$\left(\mathrm{t}_{\mathrm{e}}\right)_{\mathrm{ij}}-$ očekivano $_{207}^{\text {vreme izvršenja aktivnosti }(\mathrm{i}-\mathrm{j}) .}$

Tabela 2.

Aktiv- nost	Događaj		$\left(\mathrm{t}_{\mathrm{e}}\right)_{\mathrm{ij}}$	$\left(\sigma^{2}\right)_{\mathrm{ij}}$	Trajanje (v. j.)		Troskovi ($\mathrm{n} . \mathrm{j}$.		
	i	j			$t_{n}=t_{e}$	$\mathrm{t}_{\mathbf{u}}=\mathrm{a}$	C_{n}	Cu_{u}	Δc
A	1	2	36/6	36/36	6	3	110	320	70
B	1	4	36/6	0	5	5	250	250	*
C	1	3	24/6	36/36	4	1	50	200	50
D	2	5	27/6	9/36	4,5	2	100	250	60
E	2	4	15/6	25/36	2,5	1	50	110	40
F	4	6	30/6	16/36	5	3	150	250	50
G	3	7	26/6	4/36	4,5	4	200	250	100
H	5	10	36/6	0	6	6	300	300	*
I	5	8	18/6	0	3	3	150	150	*
J	6	8	15/6	25/36	2,5	1	100	265	110
K	7	9	12/6	4/36	2	1	200	230	30
L	8	10	36/6	13/36	6	6	400	400	*
M	8	9	6/6	0	1.	1	100	100	*
N	9	10	21/6	9/36	3,5	1	80	280	80
ZA PROJEKAT					22	15	2240	3355	

Simbol (*) u koloni za Δ C označava aktivnosti koje imaju fiksno vreme izvršenja. Vrednosti najranijih vremena nastupanja događaja nanete su u levim prednjim kvadrantima mrežnog dijagrama datog na slici 2 . Te iste vrednosti, ali u vidu decimalnih brojeva, date su u tabeli 3 .

U donjem kvadrantu kruga, koji simbolizuje događaj, upisan je broj događaja iz koga polazi aktivnost na osnovu koje je određeno vreme najranijeg nastupanja događaja. Pored najdužeg vremena najranijeg nastupanja događaja, mogu se u levi kvadrant upisati i sledeća vremena po vrednosti, a u donji kvadrant broj početnih događaja aktivnosti na osnovu kojih su određena, što može korisno poslužiti pri kasnijoj analizi.

Kao četvrti korak u analizi vremena određuje se najkasnije vreme nastupanja događaja po obrascu

$$
\begin{aligned}
&\left(T_{L}\right)_{i}=\min _{j}\left\{\left(T_{L}\right)_{j}-\left(t_{e}\right)_{i j}\right\} ; i=n-1, n-2, \ldots, 2,1 \\
& \text { usvaja se }\left(T_{L}\right)_{n}=\left(T_{E}\right)_{n} .
\end{aligned}
$$

Ovde je:
$\left(T_{L}\right)_{i}$ - najkasnije vreme nastupanja događaja i,
$\left(T_{L}\right)_{j}$ - najkasnije vreme nastupanja događaja j,
$\left(\mathrm{t}_{\mathrm{e}}\right)_{\mathrm{ij}} \quad-$ očekivano vreme izvršenja aktivnosti $(\mathrm{i}-\mathrm{j})$.

Slika 2.
Vrednosti vremena najkasnijih nastupanja događaja nanete su u desnim (zadnjim) kvadrantima mrežnog dijagrama datog na slici 2 . Te iste vrednosti, ali u vidu decimalnih brojeva, date su u tabeli 3.

Pod petim korakom analize vremena podrazumeva se određivanje uslovne vremenske rezerve ili vremenske rezerve događaja, koja se određuje pomoću izraza

$$
(S)_{i}=\left(T_{L}\right)_{i}-\left(T_{E}\right)_{i} ; \quad i=1,2, \ldots, n
$$

Tabela 3.

Događaj (i)	1	2	3	4	5	6	7	8	9	10
Vreme naj- ranijeg nastu- panja (TE)	0,0	6,0	4,0	8,5	10,5	13,5	13,5	16,0	17,0	22,0
Vreme naj- kasn. nastu- panja (T) $)_{i}$	0,0	6,0	8,5	8,5	13,0	13,5	16,5	16,0	18,5	22,0
Vremenska rezerva doga- daja (S) i	0,0	0,0	4,5	0	2,5	0	3,0	0	1,5	0

Napomenimo, da se ukupna, slobodna i nezavisna vremenska rezerva za aktivnosti može određivati i kod problema sa stohastičkim vremenom izvršenja aktivnosti ($\mathrm{a}, \mathrm{m}, \mathrm{b}$), kao i kod problema sa determinističkim vremenima izvršenja aktivnosti, samo se u izraze za vremenske rezerve unosi $\left(\mathrm{t}_{\mathrm{e}}\right)_{\mathrm{ij}}$ kao stvarno vreme izvrડ̌enja aktivnosti. Međutim, sa ovako dobijenim vremenskim rezervama ne možemo računati sa sigurnošću kao kod problema sa determinističkim vremenom izvršenja aktivnosti.
d) Određivanje kritičnog i subkritičnih puteva svakako spada u analizu vremena, mada smo to izdvojili pod posebnu tačku. Podrazumevajući da kritičnost razmatramo za pretpostavku $(\mathrm{TL})_{\mathrm{n}}=\left(\mathrm{T}_{\mathrm{E}}\right)_{\mathrm{n}}$, onda kritični put možemo odrediti odmah po određivanju najranijeg vremena nastupanja događaja, idući od završnog ka početnom događaju preko događaja čiji su brojevi upisani u donjim kvadrantima krugova koji predstavljaju događaje. Na slici 2. polazi se od događaja 10, pa preko događaja 8, 6, 4 i 2 dolazi do događaja 1. Naravno, po određivanju vremena najkasnijeg nastupanja događaja, može se proveriti tačnost određivanja kritičnog puta, jer za događaje na kritičnom putu mora biti $\left(\mathrm{T}_{\mathrm{E}}\right) \mathrm{i}=\left(\mathrm{T}_{\mathrm{L}}\right) \mathrm{i}$, za svako i sa kritičnog puta.

Subkritične puteve prve i druge vrste možemo odrediti upisujući gde je to potrebno, u levi kvadrant dve naredne vrednosti vremena najranijeg nastupanja događaja, a u donji kvadrant brojeve početnih događaja aktivnosti na osnovu kojih su ta vremena određena. Za događaje na kritičnom putu ova vremena uvek određivati kada postoje, jer su najveci izgledi da ce subkritiěni putevi imati izvestan broj zajedničkih aktivnosti sa kritičnim putem. Na mrežnom dijagramu sa slike 2 . drugo po vrednosti vreme nastupanja događaja je obeleženo u malim zagradama, a treće u srednjim. Analogno su obeleženi i brojevi događaja na osnovu kojih su određeni. Subkritični put prve vrste je obeležen sa (- - - - -), a druge vrste sa (---.-.---).

Tabelarno određivanje subkritičnih puteva prve i druge viste dato je u tabeli 4, u kojoj su navedeni svi putevi sa pripadajućim aktivnostima i vremenima izvršenja.

Znači, kritičan put sačinjavaju aktivnosti A-E-F-J-L i njegovo vreme iznosi 22 vremenske jedinice, dok subkritične puteve prve i druge vrste sačinjavanju aktivnosti A-E-F-J-M-N, odnosno A-D-I-L, a njihovo vreme izvršenja iznosi 20,5 , odnosno 19,5 vremenskih jedinica. Vrednost kritičnog puta je uvedena u tabeli 2 . u poslednjoj vrsti u koloni za t_{n}.
e) Kritičan put pri usiljenom vremenu izvršenja aktivnosti je određen po istom postupku kao i pri normalnom vremenu izvrక̌enja aktivnosti. Njegova vrednost je data na mrežnom dijagramu na slici 3. Sačinjavaju ga aktivncsti B-F-J-L (dvostruko izvučene), a vreme izvršenja ovoga kritičnog puta, ili projekta pri usiljenom vremenu izvř̌enja aktivnosti je 15 vremenskih jedinica. Ova vrednost je uneta i u poslednju vrstu tabele 2 . u koloni za t_{u}.

Redni broj puta	Pripadajuce aktivnosti	Trajanje (v. j.)	Primedba
1	A-D-H	$\frac{36}{6}+\frac{27}{6}+\frac{36}{6}+\frac{99}{6}=16,5$	
II	A-D-I-L	$\frac{36}{6}+\frac{27}{6}+\frac{18}{6}+\frac{36}{6}=\frac{117}{6}=19,5$	Subkritičan druge vrste
III	A-E-F-J-L	$\frac{36}{6}+\frac{15}{6}+\frac{30}{6}+\frac{15}{6}+\frac{36}{6}=\frac{132}{6}=22$	Kritican
IV	$\mathrm{A}-\mathrm{E}-\mathrm{F}-\mathrm{S}_{\mathbf{2}}-\mathrm{K}-\mathrm{N}$	$\frac{36}{6}+\frac{15}{6}+\frac{30}{6}+\frac{12}{6}+\frac{21}{6}=\frac{114}{6}=19$	
V	A-E-F-J-M-N	$\frac{36}{6}+\frac{15}{6}+\frac{30}{6}+\frac{15}{6}+\frac{6}{6}+\frac{21}{6}=\frac{123}{6}=20,5$	Subkritičan prve viste
VI	$\mathrm{B}-\mathrm{F}-\mathrm{J}-\mathrm{L}$	$\frac{30}{6}+\frac{30}{6}+\frac{15}{6}+\frac{36}{6}=\frac{111}{6}=18,5$	
VII	$\mathrm{B}-\mathrm{F}-\mathrm{S}_{2}-\mathrm{K}-\mathrm{N}$	$\frac{30}{6}+\frac{30}{6}+\frac{12}{6}+\frac{21}{6}=\frac{93}{6}=15,5$	
VIII	$\mathrm{B}-\mathrm{F}-\mathrm{J}-\mathrm{M}-\mathrm{N}$	$\frac{30}{6}+\frac{30}{6}+\frac{15}{6}+\frac{6}{6}+\frac{21}{6}=\frac{102}{6}=17$	
IX	C-G-K-N	$\frac{24}{6}+\frac{26}{6}+\frac{12}{6}+\frac{21}{6}=\frac{83}{6}=13,83$	
X	$\mathrm{C}-\mathrm{S}_{1}-\mathrm{F}-\mathrm{J}-\mathrm{L}$	$\frac{24}{6}+\frac{30}{6}+\frac{15}{6}=\frac{36}{6}=17,5$	
XI	$\mathrm{C}-\mathrm{S}_{1}-\mathrm{F}-\mathrm{J}-\mathrm{M}-\mathrm{N}$	$\frac{24}{6}+\frac{30}{6}+\frac{15}{6}+\frac{6}{6}+\frac{21}{6}=\frac{96}{6}=16$	
XII	$\mathrm{C}-\mathrm{S}_{1}-\mathrm{F}-\mathrm{S}_{2}-\mathrm{K}-\mathrm{N}$	$\frac{24}{6}+\frac{30}{6}+\frac{12}{6}+\frac{21}{6}=\frac{87}{6}=14,5$	

f) Određivanje verovatnoća nastupanja događaja $(\mathrm{P})_{i}$ vrši se preko faktora verovatnoće $(Z)_{i}$, podrazumevajući da je nastupanje događaja aleatorna promenljiva sa normalnim rasporedom verovatnoće. Faktor verovatnoće određuje se po izrazu

$$
(\mathrm{Z})_{\mathrm{i}}=\frac{\left(\mathrm{T}_{\mathrm{s}}\right)_{\mathrm{i}}-\left(\mathrm{T}_{\mathrm{E}}\right)_{\mathrm{i}}}{\sqrt{ } \Sigma \delta_{\mathrm{i}}^{2}} ; \quad \mathrm{i}=2,3, \ldots, \mathrm{n}
$$

gde je:
$(\mathrm{Z})_{\mathrm{i}} \quad-\quad$ faktor verovatnoće nastupanja događaja i za vreme $\left(\mathrm{T}_{\mathrm{s}}\right)_{\mathrm{i}}$;
$\left(T_{s}\right)_{i}$ - planirano vreme nastupanja događaja i,
$\left(T_{E}\right)_{i}$ - vreme najranijeg nastupanja događaja i,
$\delta_{i}^{2} \quad$ - zbir varijansi svih aktivnosti najdužeg puta od početnog događaja do događaja i.

Slika 3.

Verovatnoća nastupanja događaja se određuje pomoću izraza

$$
P(Z)_{i}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} d x, \text { za } i=z, 3, \ldots, n
$$

gde je:

$$
P(Z)_{i} \quad \text { - verovatnoća nastupanja događaja } i,
$$

(Z) $\mathrm{i}_{\mathrm{i}} \quad$ - faktor verovatnoće nastupanja događaja i.

Funkcija $P(Z)$ se najčesće daje u obliku tabličnih vrednosti, pri čemu se uzima P $P(Z \leqslant-3)=0$, i $P(Z \geqslant 3)=1$. Vrednosti ove funkcije su date u tabeli 5.

Odredimo prvo verovatnoću da ce završni događaj projekta (10) nastupiti posle 15 vremenskih jedinica

$$
(Z)_{10-15}=\frac{15-22}{\sqrt{\frac{36}{36}+\frac{25}{36}+\frac{16}{36}+\frac{25}{36}+\frac{16}{36}}}=\frac{-7}{\sqrt{\frac{118}{36}}}=\frac{-7}{\frac{10,86}{6}}=
$$

$$
=-3,87
$$

Tabela 5.

Z	$P(Z)$	Z	$P(Z)$	Z	$P(Z)$	Z	$P(Z)$
$-3,0$	0,0013	$-1,4$	0,0808	0,2	0,5793	1,8	0,9641
$-2,9$	0,0019	$-1,3$	0,0968	0,3	0,6179	1,9	0,9713
$-2,8$	0,0026	$-1,2$	0,1151	0,4	0,6554	2,0	0,9772
$-2,7$	0,0035	$-1,1$	0,1357	0,5	0,6915	2,1	0,9821
$-2,6$	0,0047	$-1,0$	0,1587	0,6	0,7257	2,2	0,9861
$-2,5$	0,0062	$-0,9$	0,1841	0,7	0,7580	2,3	0,9893
$-2,4$	0,0082	$-0,8$	0,2119	0,8	0,7881	2,4	0,9918
$-2,3$	0,0107	$-0,7$	0,2420	0,9	0,8159	2,5	0,9938
$-2,2$	0,0139	$-0,6$	0,2743	1,0	0,8413	2,6	0,9953
$-2,1$	0,0179	$-0,5$	0,3058	1,1	0,8643	2,7	0,9965
$-2,0$	0,0228	$-0,4$	0,3446	1,2	0,8849	2,8	0,9974
$-2,9$	0,0287	$-0,3$	0,3821	1,3	0,9032	2,9	0,9981
$-1,8$	0,0359	$-0,2$	0,4207	1,4	0,9192	3,0	0,9987
$-1,7$	0,0446	$-0,1$	0,4602	1,5	0,9332		
$-1,6$	0,0548	0,0	0,5000	1,6	0,9452		
$-1,5$	0,0668	0,1	0,5398	1,7	0,9554		

Kako je $(Z)_{10-15}<-3$, to uzimamo $(P)_{10-15}=0$. Drugim rečima, ne postoje nikakve sanse (ili vrlo, vrlo male su) da cé događaj 10 nastupiti u toku 15 vremenskih jedinica.
Odredimo verovatroću nastupanja završnog događaja projekta do kraja 20. vremenske jedinice.

$$
(Z)_{10-20}=\frac{20-22}{\sqrt{\frac{118}{36}}}=\frac{-2}{\frac{10,86}{6}}=-1,1 .
$$

Iz tabele 5. vidimo da za faktor verovatncíe od $-1,1$ odgovara sledeća verovatnoća nastupanja događaja

$$
(P)_{10-20}=0,1357
$$

Znači, verovatnoća da će događaj 10 nastupiti do kraja 20. vremenske jedinice iznosi $13,57 \%$.

Na kraju odredimo verovatnoću nastupanja završnog događaja projekta do kraja 25. vremenske jedinice

$$
(Z)_{10-25}=\frac{25-22}{\sqrt{\frac{118}{36}}}=\frac{3}{\frac{10,86}{6}}=1,66
$$

Kako u tabeli 5 , ne postoji vrednost $P(Z)$ za $Z=1,66$, to cemo izvršiti linearnu interpolaciju da bismo za ovu vrednost faktora verovatnoce odredili verovatnoću

$$
\begin{gathered}
P(Z=1,70)=0,9554 \\
P(Z=1,60)=0,9452 \\
\text { Ovde je } \Delta Z=0,10, \Delta P(Z)=0,0102 \\
\text { Za } \Delta Z=0,06 \text { imamo } \Delta P(Z)=\frac{0,0102}{0,10} \cdot 0,06=0,0061 .
\end{gathered}
$$

Otuda je

$$
P(Z=1,66)=P(Z=1,60)+0,0061=0,9452+0,0061=0,9513 .
$$

Otuda, verovatnoća nastupanja završnog događaja do kraja 25. vremenske jedinice iznosi

$$
(P)_{10-25}=0,9513=95,13 \%
$$

Vidimo, da možemo sa velikom sigurnošcu tvrditi da će završni događaj nastupiti, odnosno da će se projekat završiti, do kraja 25 . vremenske jedinice.

Ver , vatnoća nastupanja događaja je značajan činilac kod primene mrežnog planiranja. Ako se investitoru ponudi kratak period izvršenja projekta, na primer kod nas 15 vremenskih jedinica, investitor ce nas sigurno angažovati na ovom poslu, ali je skoro sigurno da nećemo posao obaviti na vreme i da cemo plaćati penale. To nije mudra politika poslovanja za nas. Ako se investitoru ponudi dug period izvršenja projekta, na primer kod nas 25 vremenskih jedinica, onda smo sigurni da ćemo ponudu ispuniti, ali tada će investitor angažovati ponuđivača sa kraćim periodom izvršenja projekta. Ovo, takođe, nije mudra politika poslovanja za nas. Zato treba tražiti trece rešenje. Ponuditi period izvršenja projekta, čija ce se verovatnoća izvršenja kretati u granicama od (70-90)\%. Kolike ce ove granice biti, zavisi od prirode posla i od ponuđivača, pa i tome treba posvetiti odgevarajuću pažnju.
g) Direktni troškovi projekta pri normalnom i usiljenom vremenu izvršenja aktivnosti, dobiju se sabiranjem direktnih troskova za pojedine aktivnosti. Tako u tabeli 2. troškovi projekta za normalno vreme izvršenja aktivnosti dobijeni su sabiranjem kolone za C_{n} i oni iznose 2240 novčanih jedinica. Na isti način, sabiranjem kolone za C_{u} dobijaju se direktni troškovi projekta za usiljeno vreme izvršenja aktivnosti, koji iznose $3355{ }_{214}^{\text {novčanih }}$ jedinica. Smatracemo da je
priraštaj direktnih troškova linearan pri smanjenju vremena izvršenja aktivnosti od normalnog do usiljenog, te cemo priraštaj direktnih troškova po jedinici vremena skraćenja odrediti po izrazu •

$$
(\Delta C)_{i j}=\left|\frac{\left(C_{n}\right)_{i j}-\left(C_{u}\right)_{i j}}{\left(t_{n}\right)_{i j}-\left(t_{u}\right)_{i j}}\right|\left(\frac{\mathrm{n} . j}{v . j .}\right),
$$

gde je:
$(\Delta C)_{i j} \quad$ jedinični priraštaj direktnih troškova za aktivnost $(i-j)$;
$\left(C_{n}\right)_{i j}$ - direktni torškovi za normalno izvršenje aktivnosti $(i-j)$;
$\left(\mathrm{C}_{\mathrm{u}}\right)_{\mathrm{ij}}$ - direktni troškovi za usiljeno izvršenje aktivnosti ($\mathrm{i}-\mathrm{j}$);
$\left(\mathrm{t}_{\mathrm{n}}\right)_{\mathrm{ij}} \quad$ - vreme normalnog izvrśenja aktivnosti ($\mathrm{i}-\mathrm{j}$);
$\left(t_{u}\right)_{i j} \quad$ - vreme usiljenog izvršenja aktivnosti (i-j).
Jedinični priraštaj troškova je određen za sve aktivnosti i dat u tabeii 2.
Primenićemo iterativni postupal. da bismo odredili optimalne troskove projekta za dato vreme izvršenja. Dužina kritičnog puta pri normalnom vremenu izvršenja je $T_{n}=22 \mathrm{v} . j$, a pri usiljenom vremenu izvršenja je $T_{u}=15 \mathrm{v} . j$. Zna i i treba odrediti optimalne troškove projekta za vreme izvršenja od

$$
\frac{\mathrm{T}_{\mathrm{n}}+\mathrm{T}_{\mathrm{u}}}{2}=\frac{22+15}{2}=18,5 \mathrm{v.j} .
$$

Pri određivanju optimalnih troškova koristićemo se mrežnim dijagramom datim na slici 4. Sa leve strane aktivnosti naneto je: oznaka, vreme normalnog izvršenja i (u malim zagradama) vreme usiljenog izvršenja, a sa desne strane naneti su jedinični troškovi. Kritični put je označen punim linijama.

Da bi se skratilo vreme izvršenja projekta, mora se skratiti vrene izvršenja kritičnog puta, ali ovo skracivanje može se vršiti samo do pojave novog kritičnog puta, ili do vremena usiljenog izvršenja aktivnosti koje se skraćuju. Prvo skraćujemo aktivnost kod koje su jedinični direktni troškovi najniži. U našem primeru je to aktivnosi E. Nju možemo skratiti do njenog vremena usiljenog izvršenja, jer se ona nalazi i na subkritičnom putu prve vrste, a on je kraći od kritičnog za 1,5 v.j. Znači u ovoj prvoj iteraciji imamo skraćenje vremena $\Delta \mathrm{t}_{1}=$ $1,5 \mathrm{v} . j, \mathrm{tj}$. aktivnost E skraćujemo sa $2,5 \mathrm{v} . j$. na $1 \mathrm{v} . j$. To daje:

- vreme izvršenja projekta $\mathrm{T}_{1}=\mathrm{T}_{\mathrm{n}}-\Delta \mathrm{t}_{1}=22-1,5=20,5 \mathrm{v} . j$.
- direktni troškovi projekta $C_{1}=C_{n}+\Delta t_{1} \cdot \Delta C_{E}=2240+1,540=$

$$
=2300 \mathrm{n} . \mathrm{j} .
$$

Stanje posle prve iteracije skracenja vremena izvršenja projekta predstavljeno je mrežnim dijagramom na slici 5.

U drugoj iteraciji skraćujemo aktivnost F jer su njeni jedinični troškovi $50 \frac{\mathrm{n} . j}{\mathrm{v} . \mathrm{j} .}$. Aktivnost Fbi mogli skratiti za 2 v .j. do njenog usiljenog vremena izvršenja, alı ne możemo, zbog toga što bi tada najranije vreme nastupanja događaja 8 bilo 12,5 v.j. preko aktivnosti J, a 13,5 v.j. preko aktivnosti I. Drugim rečima, subkritični put druge vrste bi ranije postao kritičan, odnosno on dozvoljava da se aktivnost F skrati samo za 1 v.j. Znači u drugoj iteraciji skraćujemo aktivnost F sa 5 v.j. na 4 v.j. To daje:

- vreme izvršenja projekta $T_{2}=T_{1}-\Delta t_{2}=20,5-1=19,5 \mathrm{v} . j$.
- direktnit troškovi projekta $C_{2}=C_{1}+\Delta t_{2} \cdot \Delta C_{F}=2300+1 \cdot 50=$

$$
=2350 \mathrm{n} . \mathrm{j} .
$$

Stanje posle druge iteracije predstavljeno je mrežnim dijagramom na slici 6.

Slika 6.

Posle druge iteracije pojavio se novi kritǐni put A-D-I-L. To je prvobitno određeni subkritični put druge vrste. Subkritični put prve vrste nije postao još kritičan, jer skrá̌ujuci aktivnosti E i F skracivali smo i njega.

U trećoj iteraciji moramo za isti iznos skratiti oba kritična puta. Kako je aktivnost A sastavni elemenat oba kritična puta, a jedinični troškovi su joj niži od zbira jediničnih troškova aktivnosti D i F, to cemo u ovoj iteraciji nju skracivati. Do njenog vremena usiljenog izvršenja mogli bi je skratiti za 3 v.j. Međutim, aktivnost B dozvoljava da skracenje bude samo 2 vremenske jedinice. Nama je još potrebno samo skracenje od 1 vremenske jedinice, pa da postignemo traženu vrednost vremena izvršenja projekta od 18,5 vremenskih jedinica. Znači u ovoj iteraciji skraćujemo aktivnost A sa 6 na 5 vremenskih jedinica, odnosno imamo $\Delta t_{3}=1 \mathrm{v} . j$. sto daje:

- vreme izvršenja projekta $T_{3}=T_{2}-\Delta t_{3}=19,5-1=18,5 \mathrm{v} . j$.
- direktni troškovi projekta $\mathrm{C}_{3}=\mathrm{C}_{2}+\Delta \mathrm{t}_{3} \cdot \Delta \mathrm{C}_{\mathrm{A}}=2350+1 \cdot 70=$ $=2420 \mathrm{n} . \mathrm{j}$.

Stanje posle trece iteracije predstavljeno je mrežnim dijåramom na slici 7.
Iznalaženje optimalnih (minimalnih) direktnih troškova za dato vreme izvršenja projekta možemo predstaviti i tabelarno kao što je u tabeli 5.

U tabeli 5. kritičan put je obeležen oznakom K, subkritičan prve vrste oznakom SK1 i subkritičan druge vrste oznakom SK2. Simbolično pisanje ispod iteracija, na primer $E: 2,5 \rightarrow 1$ v.j, znači da je u prvoj iteraciji vreme izvršenja aktivnosti E skraćeno sa 2,5 na 1 vremensku jedinicu. Ispod broja iteracije su dati
direktni troškovi projekta posle te iteracije. Vreme izvršenja pojedinih puteva posle određene iteracije dato je u koloni ispod broja te iteracije.

Tabela 5

Redni broj puta	Sastav puta	Vreme trajanja putanormalno usijano (v. j.) (v. j.)		$\begin{gathered} 1 \mathrm{t} \\ 1 . \\ \mathrm{E}: 2,5 \rightarrow 1 \\ \mathrm{C}_{1}=2300 \end{gathered}$	$\begin{gathered} \text { eraci} \\ 2 . \\ F: 5 \rightarrow 4 \\ C_{2}=2350 \end{gathered}$	3. A: $6 \rightarrow 5$ $C_{3}=2420$
I	A-D-H	16,5	11,0	16,6	16,5	15,5
II	A-D-I-L	19,5SK2	14,0	19,5SK1	19,5 K	18,5K
III	A-E-F-J-L	22,0K	14,0	20,5 K	19,5 K	18,5K
VI	A-E-F-S ${ }_{2}-\mathrm{K}$	19,0	9,0	17,5	16,5	15,5
V	A-E-F-J-M-N	20,5SK1	10,0	19,0	18,0SK1	17,0SK2
VI	B-F-J-L	18,5	15,0K	18,5	17,5SK2	17,5SK1
VII	$\mathrm{B}-\mathrm{F}-\mathrm{S}_{2}-\mathrm{K}-\mathrm{N}$	15,5	10,0	15,5	14,5	14,5
VIII	B-F-J-M-N	17,0	11,0	17,0	16,0	16,0
IX	C-G-K-N	13,8	7,0	13,8	13,8	13,8
X	C. $\mathrm{S}_{1}-\mathrm{F}-\mathrm{J}$ I.	17,5	11,0	17,5	16,5	16,5
XI	$\mathrm{C}-\mathrm{S}_{1} \mathrm{~F}-\mathrm{J}_{\mathrm{T}} \mathrm{M}-\mathrm{N}$	16,0	7,0	16,0	15,0	15,0
XII	$\mathrm{C}-\mathrm{S}_{1}-\mathrm{S}-\mathrm{S}_{2} \cdots \mathrm{~K}-\mathrm{N}$	14.5	6.0	14,5	13.5	13,5

Znači, optimalni (minimalni) troškovi izvršenja projekta za 18,5 vremenskih jedinica iznose 2420 novčanih jedinica.

7.5. RASPODELA RESURSA

9. Zadatak

Projekat cijij $_{\text {je }}$ mrežni dijagram, sa izvršenom analizom vremena, dat na slici 1 . treba izvršiti sa raspoloživom radnom snagom od 14 radnika. Svaki radnik može biti angažovan na svakoj aktivnosti. Na mrežnom dijagramu su naneseni podaci, sa leve strane aktivnosti: oznaka aktivnosti, trajanje aktivnosti i (u kružicima) intenzitet radne snage za datu aktivnost (r_{ij}), tj . broj radnika koji treba da rade na aktivnosti da bi bila izvršena u navedenom vremenu $\left(t_{i j}\right)$ sa desne strane svake aktivnosti je nanesena njena ukupna vremenska rezerva (St) ij. Projekat ima dva kritična puta. Poštujući tehnološku uslovljenost pojedinih aktivnosti, odrediti vremena njihovih početaka, koja obezbeđuju obavljanje projekta u najkraćem roku sa raspoloživom radnom snagom.

Slika 1.
Rešenje. Problem se sastoji u iznalaženju optimalne raspodele jednog resursa (radne snage) da bi se projekat obavio u najkraćem mogućem vremenskom intervalu. Za rešenje ovog problema koristiće se Grey-Kidd-ov algoritam ${ }^{1}$).

Polazi se od određivanja linijskog dijagrama (Gantograma) projekta i grafickog prikaza potrebne radne snage (resursa) u pojedinim vremenskim intervalima, kao što je predstavljeno na slici 2a i 2 b .

1) Teorijsko obrazloženje ovog algoritma videti u knjizi: J.J. Petrić, OPERACIONA ISTRAŽIVANJA II, Şavremena administracija, 1976, Beograd.

Dijagram potrebnog resursa (slika 2 b) ukazuie da je za izvršenje projekta, prema vremenskoj analizi, potrebno naivise 24 radnika u vremenskom intervalu od dve (6. i 7.) vremenske jedinice (v.j.). U trećoi, četvrtoj, petoj i osmoj v.j. potrebno je 19, a u desetoj i jedanaestoj 16 radnika. To ukazuje da je nemoguce

Slika 2a.

Slikgo2b.
obaviti projekat sa raspoloživom radnom snagom u terminu koji je dobijen vremenskom analizom. (Vremenska analiza se obavlja pod pretpostavkom da ce se u svakom vremenskom intervalu raspolagati potrebnom kolizinom resursa). Međutim, postoji dosta vremenskih intervala (u našem primeru) u kojima postoji visak resursa. Potrebe resursa su: 8 radnika u 1. v.j., 10 radnika u 2. v.j., 9 radnika u 9. v.j., 7 radnika u 12., 13., 14., 15., 16. i 17. v.j. i samo 5 radnika u 18. i 19. v.j. Drugim rečima, za ovakvo obavljanje projekta trebalo bi angažovati još

$$
(24-14) \cdot 2+(19-14) \cdot 4+(16-14) \cdot 2=44 \text { radnik } \cdot(\mathrm{v} . \mathrm{j} .)
$$

Takođe bi trebalo obezbediti posao u iznosu
$(14-8) \cdot 1+(14-10) \cdot 1+(14-9) \cdot 1+(14-7) \cdot 6+(14-5) \cdot 2=$ $=76$ radnik $\cdot(\mathrm{v} . j$.$) .$

Kako bi trebalo u tačno određenim vremenskim intervalima nalaziti nedostajucu radnu snagu i posao za suvišnu, nije teško zaključiti da je ovakva organizacija izvršenja projekta teška. Zbog toga pristupamo određivanju vremena za koje se može obaviti projekat sa raspoloživom radnom snagom. Pri primeni Grey-Kidd-ovog algoritma prednost ce imati aktivnosti sa manjom ukupnom vremenskom rezervom i većim intenzitetom resursa $r_{i j}$. Aktivnosti jednom započete ne mogu se prekidati. Postupak ćemo sprovesti po etapama.

1. etapa. Prvi vremenski interval u kome nema promene u odvijanju aktivnosti, odnosno u radnoj snazi je [$0 ; 1$], jer toliko traje aktivnost (1-3). U ovom intervalu se odvijaju aktivnosti (1-2), (1-3) i (1-4). Na osnovu ukupne vremenske rezerve određuje se redosled prvenstva odvijanja aktivnosti. Ustanovljava se potreban resurs za obavljanje aktivnosti u datom intervalu. Ukoliko potrebni resursi premašuju raspoložive, vrši se pomeranje početka aktivnosti koje su poslednje po redosledu prvenstva. Izloženo je, radi bolje preglednosti, podesno predstaviti tabelarno.
[0:1]

Pripadajuća aktivnost (i-j)	$(1-2)$	$(1-3)$	$(1-4)$	Ukupno
Ukupna vremenska rezerva $\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	0	1	0	
Intenzitet resursa r_{ij}	4	1	3	8
Redosled prvenstava (R.P.)	1	3	2	
Angažovani resurs (A.R.)	4	1	3	8

Pošto je za istovremeno obavljanje tri navedene aktivnosti potrebno 8. radnika, ne treba odlagati početak odvijanja nijedne od ovih aktivnosti u prvom vremenskom periodu.

Mada su aktivnosti (1-2) i (1-4) imale istu ukupnu vremensku rezervu 0 (kritične su), kod rangiranja redosleda obavljania dali smo prednost aktivnosti (1-2), zbog toga što je njen intenzitet resursa 4, a intenzitet resursa aktivnosti (1-4) je 3. Smatrali smo da cée se lakše uklopiti kasnije aktivnost za cije je obavljanje potrebno mànje resursa. Znači, u ovom intervalu ce se obavljati aktivnosti $(1-2),(1-3)$ i (1-4), a biće angažovano 8 radnika.
2. etapa. Razmatra se vremenski interval [1;2], jer u njemu počinje aktivnost (3-5), a završava se aktivnost (1-2), U ovom intervalu odvijaju se aktivnosti (1-2), (1-4) i (3-5). One poseduju svojstva, značajna za analizu resursa, predstavljena tabelom 2.

$[1: 2]$	Tabela 2.			
$(i-j)$	$(1-2)$	$(1-4)$	$(3-5)$	Ukupno
$\left(S_{t}\right)_{i j}$	0	0	1	
$r_{i j}$	4	3	3	10
R.P.	1	2	3	
A.R.	4	3	3	10

Potrebno je 10 radnika, pa se sve aktivnosti ovoga intervala odvijaju bez odlaganja:
3. etapa. Razmatra se vremenski interval $[2 ; 5]$. U njemu se odvijaju aktiv́nosti (1-4), (2-4), (2-6), (2-7) i (3-5). Svojstva su im predstavljena. tabelom 3.

$[2: 5]$
$(\mathrm{i}-\mathrm{j})$

Kod određivanja redosleda prvenstva rukovodili smo se sledećim. Aktivnost (1-4) je ranije započeta i kritična je, te ${ }_{12} e_{2}$ dobila prvo mesto. Aktivnost (3-5) je
na drugom mestu, mada ima veću ukupnu vremensku rezervu od aktivnosti (2-4), jer je ranije započeta, a usvojili smo da se ne mogu prekidati započete aktivnosti. Kako nemamo 19 radnika, početak aktivnosti (2-7) moramo odložiti do kraja ovog vremenskog intervala, odnosno sada ćemo smatrati da aktivnost (2-7) może poČti tek po isteku pet vremenskih jedinica. Ovo pomeranje uslovljava najranije nastupanje događaja 7 posle 11. v.j. Sada su vremenske rezerve $\left(S_{t}\right)_{(2-7)}=6$ v.j., $\left(S_{t}\right)_{(7-8)}=6 \mathrm{v} . j$. Stanje posle ove etape prikazano je linijskim dijagramom na slici 3.

Slika 3.
4. etapa. Razmatra se vremenski interval [5;7]. U njemu se odvijaju aktivnosti (2-6), (2-7), (3-5) i (4-6), čija su svojstva data tabelom 4.
$[5 ; 7]$

$(\mathrm{i}-\mathrm{j})$	$(2-6)$	$(2-7)$	$(3-5)$	$(4-5)$	$(4-6)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	2	6	1	0	4	
r_{ij}	4	7	3	5	5	24
R.P.	2	5	1	3	4	
A.R.	4	0	3	5	0	12

Kod određivanja redosleda prvenstva prvo smo razmatrali ranije započete aktivnosti (2-6) i (3-5), a potom ostale aktivnosti poređali prema vrednosti ukupne vremenske rezerve. Pošto je potrebno 24 radnika za istovremeno obavljanje svih pet aktivnosti, prinuđeni smo da početak aktivnosti (2-7) i (4-6) pomerimo do isteka razmatranog vremenskog intervala. Znači, ove aktivnosti će početi po isteku $7 \mathrm{v} . j$. Ovo pomeranje je uslovilo najranije nastupanje događaja 7 posle 13. v.j. Vremenske rezerve su: $\left(S_{t}\right)_{(2-7)}=4 \mathrm{v.j}$,, $(S t)(7-8)=4 \mathrm{v} . \mathrm{j}$.,
$\left(S_{t}\right)_{(4-6)}=2$ v.j. Stanje posle ove etape je predstavljeno linijskim dijagramom na slici 4.

Slika 4.
5. etapa. Razmatra se vremenski interval $[7 ; 8]$. U njemu se odvijaju aktivnosti (2-6), (2-7), (3-5), (4-5) i (4-6). Svojstva ovih aktivnosti su data u tabeli 5.

$7 ; 8]$	$(2-6)$	$(2-7)$	$(3-5)$	$(4-5)$	$(4-6)$	Tabela 5.
$(i-j)$	2	4	1	0	2	
$\left(S_{t}\right)_{i j}$	4	7	3	5	5	24
r_{ij}	4	5	2	1	4	
R.P.	3	0	3	5	0	12
A.P.	4	0				

Pri određivanju redosleda prvenstva prvo smo razmatrali ranije zapoCete aktivnosti (2-6), (3-5) i (4-5), a potom aktivnosti (2-7) i (4-6). Opet zaključujemo da se mora odložiti pǒetak aktivnosti (2-7) i (4-6) do isteka $8 \mathrm{v} . j$. Tada ce aktivnosti (2-7) i (7-8) imati ukupnu vremensku rezervu od 3 v.j., a aktivnost (4-6) od 1 v.j. Događaj 7 može najranije nastupiti posle 14. v.i., a događaj 6 posle 10. v.j. Stanje posle ovoga pomeranja predstavljeno je slikom 5.

6. etapa. Razmatra se vremenski interval [8;9], sa aktivnostima (2-6), (2-7), (4-5) i (4-6), čije su karakteristike predstavljene tabelom 6.
[8;9]
Tabela 6

$(\mathrm{i}-\mathrm{j})$	$(2-6)$	$(2-7)$	$(4-5)$	$(4-6)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	2	3	0	1	
r_{ij}	4	7	5	5	21
R.P.	2	4	1	3	
A.R.	4	0	5	5	14

Konstatujemo da se mora odložiti početak aktivnosti (2-7) do isteka 9 v.j. Ovo uslovljava najranije nastupanje događaja 7 posle 15 v.j., odnosno $\left(\mathrm{S}_{\mathrm{t}}\right)_{(2-7)}=$ $=2 \mathrm{v} . \mathrm{j} . \mathrm{i}\left(\mathrm{S}_{\mathrm{t}}\right)_{(7-8)}=2 \mathrm{v} . \mathrm{j}$. Stanje posle ove etape je prikazano linijskim dijagramom na slici 6.

7. etapa. Razmatra se vremenski interval $[9 ; 10]$ sa aktivnostima (2-7), (4-6) i (5-8), cije su karakteristike date u tabeli 7.
$[9 ; 10]$

$(i-j)$	$(2-7)$	$(4-6)$	$(5-8)$	Ukupno
$\left(S_{t}\right)_{i j}$	2	1	0	
$I_{i j}$	7	5	5	17
R.P.	3	1	2	
A.R.	0	5	5	10

Kod određivanja redosleda prvenstva aktivnosti (4-6) smo dodelili prvo mesto, zbog toga što je ranije započeta. I u ovoj etapi dolazi do pemeranja početka aktivnosti ($2-7$) za još jednu vremensku jedinicu, te se za toliko mmanjuje njena ukupna vremenska rezerva, kao i aktivnosti (7-8), jer je sada najranije nastupanje dogadaja 7 posle 16. v.j. Stanje posle ove etape je prikazano linijskim dijagramom na slici 7.

Slika 7.
8. etapa. Razmatra se vremenski interval $[10 ; 16]$ u kome se odvijaju aktivnosti $(2-7) .(5-8)$ i $(6-8)$, cije su karakteristike date tabelom 8 .
$[10 ; 16]$
Tabela 8.

$(i-i)$	$(2-7)$	$(5-8)$	$(6-8)$	Ukupno
$\left(S_{t}\right)_{i j}$	1	0	1	
$r_{i j}$	7	5	2	14
R.P.	2	1	3	
A.R.	7	5	2	14

Karakteristika ove etape je da je potrebno 14 radnika, te neće doci do odlaganja izvršenja aktivnosti.
9. etapa. Razmatra se vremenski interval [16;18] u kome se odvijaju aktivnosti (5-8), (6-8) i (7-8), čije su karakteristike date tabelom 9.
[16;18]

$(\mathrm{i}-\mathrm{j})$	$\left(\begin{array}{ll}5 & 8\end{array}\right)$	$(6-8)$	(78)	Ukupno
$\left(\mathrm{S}_{\mathrm{t}} \mathrm{iji}\right.$	0	1	1	
r_{ij}	5	2	9	16
R.P.	1	2	3	
A.R.	5	2	0	7

Držeçi se principa, da se ne prekidaju započete aktivnosti, morali smo pomeriti početak aktivnosti (7-8) do isteka 18. v.j, iako smo svesni da nam to produžuje trajanje projekta do 20 v.j. i da u ovom vremenskom intervalu angažujemo 7 radnika. Sada je $\left(S_{t}\right)(7-8)=-1$ v.j.. Što samo ukazuje da se izvršenje projekta produžava za $1 \mathrm{v} . j$. u odnosu na prvobitno odredeno vreme $\mathrm{T}_{\mathrm{n}}=$ $=19$ v.j. Stanje posle ovoga pomeranja predstavljeno je slikom 8 .

Slika 8.

10 etapa. Razmatra se vremenski interval $[18 ; 19]$ sa aktivnostima $(5-8)$ i (7-8), $\mathrm{c}_{\text {ije }}$ su karakteristike date u tabeli 10 .
$[18: 19]$

$(i-j)$	$(5-8)$	$(7-8)$	Ukupno
$\left(S_{t}\right)_{\mathrm{ij}}$	1	0	
r_{ij}	5	9	14
R.P.	1	2	
A.R.	5	9	14

U ovoj etapi ne dolazi do odlaganja izvršenja aktivnosti.
11. etapa Razmatra se vremenski interval [19;20], u kome se odvija samo aktivnost (7-8). Kako je za njeno obavljanje potrebno 9 radnika, to će ona biti i obavljena u ovom periodu.

Slika 9.
Na slici 9. je grafički prikazana angažovanost radne snage u vremenskom periodu- [0;20]. Raspolaže se sa $14 \cdot 20=280$ radnik - (v.j.), a neiskoriš́eno je : $(14-8) \cdot 1+(14-10) \cdot 1+(14-12) \cdot 6+(14-10) \cdot 1+(14-7) \cdot 2+$ $+(14-9) \cdot 1=45$ radnik $\cdot(\mathrm{v} . j$.). Znači, neiskorišcenost resursa iznosi (45:280) \cdot $100=16,07 \%$. Ukoliko ne smatramo da su neiskorišeni radnici koji nisu angažovani u 20. v.j., jer se mogu blagovremeno uputiti na drugi posao, onda neiskorišcenost resursa iznosi $(40: 280) \cdot 100=14,2 \%$.

10. Zsdatak

Rešiti problem tretiran u 9. zadatku sa jedinom izmenom, da se mogu prekidati započete aktivnosti.

Resenje. Za rešavanje ovoga zadatka koristićemo takođe Grey-Kidd-ov algoritam. Resenje cemo dati u vidu tabela sa neophodnim komentarom koji ce se odnositi samo na razlike u odnosu na prethodni zadatak.

Mrežni dijagram, linijski dijagram, dijagram potrebnog resursa i prve dve etape analize resursa su isti kao u 9. zadatku.
3. etapa
[2; 5]
Tabela 11.

$(\mathrm{i}-\mathrm{j})$	$(1-4)$	$(2-4)$	$(2-6)$	$(2-7)$	$(3-5)$	Ukupno
$\left(S_{\mathrm{t}} \mathrm{tij}_{\mathrm{ij}}\right.$	0	0	2	9	1	
r_{ij}	3	2	4	7	3	19
R.P.	1	2	4	5	3	
A.R.	3	2	4	0	3	12

Pomera se početak aktivnosti (2-7) do kraja 5. v.j. (kao iu 9. zadatku). Ovo uslovljava: $t_{7}{ }^{(0)}=11$ v.i., $\left(S_{t}\right)_{(2-7)}=6 \mathrm{v} . j .,\left(S_{t}\right)_{(7-8)}=6$ v.j., odgovara slika 3. u 9. zadatku.

4. etape

[5;7]

$(\mathrm{i}-\mathrm{j})$	$(2-6)$	$(2-7)$	$(3-5)$	$(4-5)$	$(4-6)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}} \mathrm{ij}\right.$	2	6	1	0	4	
P_{jj}	4	7	3	5	5	24
R.P.	3	5	2	1	4	
A.R.	4	0	3	5	0	12

Pomera se početak aktivnosti (2-7) i (4-6) do kraja 7. v.j. Ovo uslovljava: $t_{f}^{(\rho)}=13 \mathrm{v} . j ., t_{6}^{(0)}=9 \mathrm{v} . \mathrm{j}$. (ne menja se), $\left(\mathrm{St}_{\mathrm{t}}\right)(2-7)=4 \mathrm{v} . \mathrm{j} .,\left(\mathrm{S}_{\mathrm{t}}\right)(7-8)=4 \mathrm{v} . \mathrm{j}$., $\left(S_{q}\right) \cdot(4-6)=2 v . j$. Stanje je predstavljeno slikom 4. u 9. zadatku.

5. etapa

$[7 ; 8]$
Tabela 13.

$(\mathrm{i} j)$	$(2-6)$	$(2-7)$	$(3-5)$	$(4-5)$	$(4-6)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	2	4	1	0	2	
r_{ij}	4	7	3	5	5	24
R.P.	4	5	2	1	3	
A.R.	0	0	3	5	5	13

Odlaže se izvršenie aktivnosti (2-7) i dela aktivnosti (2-6) do kraja 8. v.j. Ovo uslovljava: $\mathrm{t}_{6}{ }^{(0)}=10 \mathrm{v} . \mathrm{j}, \mathrm{t}_{7}(0)=14 \mathrm{v} . \mathrm{j} .,\left(\mathrm{St}_{\mathrm{t}}\right)(2-6)=1 . \mathrm{v} . \mathrm{j} .,\left(\mathrm{S}_{\mathrm{t}}\right)_{(2-7)}=3 \mathrm{v} . \mathrm{j}$. $\left(S_{t}\right)_{(6-8)}=1 \mathrm{v.j} ., \quad\left(S_{t}\right)_{(7-8)}=3 \mathrm{v.j}$. Vremenska rezerva $\left(S_{t}\right)_{(2-6)}$ odnosi se na deo ove aktivnosti čije je izvršenje odgođeno. Stanje posle ove etape dato je na slici 10.

Slika L_{2}
6. etapa
[8; 9]
Tabela 14.

$(\mathrm{i}-\mathrm{j})$	$(2-6)$	$(2-7)$	$(4-5)$	$(4-6)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	1	3	0	2	
r_{ij}	4	7	5	5	21
R.P.	2	4	1	3	
A.R.	4	0	5	5	14.

Odlaže se početak aktivnosti (2-7) do kraja 9. v.j. Ovo uslovljava: $\mathrm{t}_{7}{ }^{(0)}=15 \mathrm{v} . \mathrm{j} .,\left(\mathrm{S}_{\mathrm{ts}}\right)_{(2-7)}=\left(\mathrm{S}_{\mathrm{t}}\right)_{(7-8)}=2 \mathrm{v} . \mathrm{j}$. Stanje je dato slikom 11 .

7. etapa

[9;10]
Tabela 15.

$(\mathrm{i}-\mathrm{j})$	$(2-6)$	$\binom{2}{7}$	$\left(\begin{array}{ll}5 & 8\end{array}\right)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	1	2	0	
r_{ij}	4	7	5	16
R.P.	2	3	1	
A.R.	0	7	5	12

Pomera se izvršenje dela aktivnosti (2-6) do kraja 10. v.j. Ovo je uslovilo: $\mathrm{t}_{6}(0)=11 \mathrm{v} . j .,\left(\mathrm{S}_{\mathrm{t}}\right)_{(2-6)}=\left(\mathrm{S}_{\mathrm{t}}\right)_{(6-8)}=0$. Stanje je dato slikom 12.

Slika 12.
8. etapa
$[10 ; 11]$

$(i-j)$	$(2-6)$	$(2-7)$	$(5-8)$	Ukupno
$\left(S_{1}\right)_{i j}$	0	2	0	
$r_{i j}$	4	7	5	16
R.P.	1	3	2	
A.R.	4	0	5	9

Pomera se izvršenje dela aktivnosti (2-7) do kraja 11. v.j. Ovo uslovljava $\mathrm{t}_{7}(0)=16 \mathrm{v} . \mathrm{j} .,\left(\mathrm{S}_{\mathrm{t}}\right)_{(2-7)}=\left(\mathrm{S}_{\mathrm{t}}\right)_{(7-8)}=1 \mathrm{v} . \mathrm{j}$. Stanje je dato slikom 13.

Slika 13.
9. etapa
[11; 16]

$(\mathrm{i}-\mathrm{j})$	$(2-7)$	$(5-8)$	$(6-8)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	1	0	0	
r_{ij}	7	5	2	14
R.P.	3	1	2	
A.R.	7	5	2	14

10. etapa
[16; 18]
Tabela 18.

$(\mathrm{i}-\mathrm{j})$	$(5-8)$	$(6-8)$	$(7-8)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	0	0	0	
r_{ij}	5	2	9	16
R.P.	2	3	1	
A.R.	5	0	9	14

Smatrajući da je najpodesnije odložiti izvršenje aktivnosti sa najmanjim intenzitetom resursa, to je urađeno sa delom aktivnosti (6-8). Ovo je uslovilo: $\mathrm{t}_{\mathrm{g}}(0)=21 \mathrm{v} . j$., $\left(\mathrm{S}_{\mathrm{t}}\right)_{(6-8)}=-2 \mathrm{v} . j$. Ovo znači da cé izvršenje projekta kasniti $2 \mathrm{v} . j$. u odnosu na ranije proračunato vreme. Stanje je dato slikom 14.

Slika 14
11. etapa
[18; 19]
Tabela 19.

$(\mathrm{i}-\mathrm{j})$	$(5-8)$	$(6-8)$	Ukupno
$\left(\mathrm{S}_{\mathrm{t}}\right)_{\mathrm{ij}}$	0	-2	
r_{ij}	5	2	7
R.P.	2	1	
A.R.	5	2	7.

12. etapa. Razmatra se vremenski intreval [19; 21]. Odvija se atkivnost (6-8) i angažuju se samo dva radnika.

Angažovanje resursa (radne snage), u toku izvršenja projekta, je prikazano na slici 15.

Slika 15.

Raspolaže se sa $14 \cdot 21=294$ radnik $\cdot(\mathrm{v} . \mathrm{j}$.$) . Neiskoriščeno je: (14-8) \cdot 1$ $+(14-10) \cdot 1+(14-12) \cdot 6+(14-13) \cdot 1+(14-9) 1+(14-2) 2=59$ radnik • (v.j.). Procenat neiskorišćenosti je (58:294) $100=19,73 \%$. Smatrajuci da se blagovremeno mogu premeštati na drugi posao radnici koji nisu angažovani na poslednjim etapama projekta, neiskorišcenost se smanjuje na 28 radnik - (v.j.), odnosno procenat neiskorišćenosti na (28:294) $100=9,52 \%$.
(Ova stranica je ostavljena prazna)

3. NUMERIČKO RJEŠAVANJE LINEARNOG PROBLEMA SIMPLEKS METODA

U ovom će se poglavlju naučiti rješavati linearni problem (LP) u standardnom obliku simpleks metodom.

Hustrirat će se simpleks metoda na sljedećem primjeru:
Naći maksimum funkcije $5 x_{1}+4 x_{2}+3 x_{3}$ uz ograničenja

$$
\begin{array}{cr}
2 x_{1}+3 x_{2}+x_{3} \leq & 5 \\
4 x_{1}+x_{2}+2 x_{3} \leq & 11 \tag{3.1}\\
3 x_{1}+4 x_{2}+2 x_{3} \leq & 8 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Preliminarni korak metode sastoji se od uvođenja takozvanih dopunskih varijabli. Da bi se motivirao ovaj koncept, razmotri se proo ograničenje

$$
\begin{equation*}
2 x_{1}+3 x_{2}+x_{3} \leq 5 \tag{3.2}
\end{equation*}
$$

Za svako moguće rješenje x_{1}, x_{2}, x_{3} vrijednost lijeve strane od (3.2) je, u najboljem slučaju, jednaka vrijednosti desne strane. Često može postojati dopuna između dviju vrijednosti. Dopuna će se označiti $s x_{4}$, to jest definirat će se $x_{4}=5-2 x_{1}-3 x_{2}-x_{3}$. Nejednakost (3.2) sada se može pisati kao $x_{4} \geq 0 . N a$ sličan način, sljedeća dva ograničenja omogućuju uvođenje varijabli x_{5} i x_{6}. Funkcija cilja $5 x_{1}+4 x_{2}+3 x_{3}$ može se označiti sa z. Konačno, za svaki odabir brojeva x_{1}, x_{2}, x_{3} definirat će se varijable x_{4}, x_{5}, x_{6} i z pomoću formula:

$$
\begin{align*}
& x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
& x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \tag{3.3}\\
& x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& z=5 x_{1}+4 x_{2}+3 x_{3}
\end{align*}
$$

Tim zapisom, problem se sada može formulirati kao:
naći maksimum od $z u z$ ograničenja

$$
\begin{equation*}
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0 \tag{3.4}
\end{equation*}
$$

Nove varijable x_{4}, x_{5}, x_{6} definirane $s(3.3)$ zovu se dopunske varijable. Dopunske varijable dolaze u funkciji cilja s koeficijentom nula. Za početne varijable x_{1}, x_{2}, x_{3} obično se kaže da su to varijable odlučivanja (varijable odluke) ili strukturne varijable. Bitno je naznačiti da jednadžbe u (3.3) izriču ekvivalenciju između (3.1) i (3.4).

Preciznije:

- svako moguće rješenje x_{1}, x_{2}, x_{3} od (3.1) može se proširiti, na jedinstven način određen s (3.3), u moguće ješenje $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ od (3.4);
- svako moguće rješenje $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ od (3.4) može se ograničiti, jednostavno poništavanjem dopunskih varijabli, u moguće rješenje x_{1}, x_{2}, x_{3} od (3.1);
- funkcija cilja na skupu mogućih rješenja od (3.1) i na skupu mogućih rješenja od (3.4) poprima istu ekstremnu vrijednost. Optimalno rješenje na (3.1) $x_{1}^{*}, x_{2}^{*}, x_{3}^{*}$ podudara s optimalnim rješenjem na (3.4) $\left(x_{4}=x_{5}=x_{6}=0\right)$.

Velika strategija simpleks metode je strategija sukcesivnih poboljšanja: nakon što je dobiveno neko moguće ješenje $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ od (3.4), nastojat će se odrediti drugo moguće rješenje $\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}, \bar{x}_{5}, \bar{x}_{6}$ koje je bolje u smislu da je:

$$
5 \bar{x}_{1}+4 \bar{x}_{2}+3 \bar{x}_{3}>5 x_{1}+4 x_{2}+3 x_{3}
$$

Ponavljajući ovaj postupak konačan broj puta, na kraju će se doći do optimalnog rješenja. Za početak je potrebno znati neko moguće rješenje x_{1}, x_{2}, $x_{3}, x_{4}, x_{5}, x_{6}$. Nije teško pronaći jedno u ovom primjeru: stavljajući za varijable odluke x_{1}, x_{2}, x_{3}, nula, određ̛uju se dopunske varijable x_{4}, x_{5}, x_{6} od (3.3).

Stoga početno rješenje,

$$
\begin{equation*}
x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=5, x_{5}=11, x_{6}=8 \tag{3.5}
\end{equation*}
$$

daje $z=0$.
U smislu te prikazane velike strategije, trebalo bi sada potražiti moguće rješenje koje daje veću vrijednost z. Pronalaženje takvog rješenja nije teško. Na primjer, ako se drži da je $x_{2}=x_{3}=0$ i povećavamo vrijednost od x_{1}, dobiva se da je $z=5 x_{1}>0$. Stoga, ako se zadrži da je $x_{2}=x_{3}=0$ i stavi da je $x_{1}=1$, dobiva se da je $z=5 i x_{4}=3, x_{5}=7, x_{6}=5$. Još bolje, ako se zadrži $x_{2}=x_{3}=0$ i stavi da je $x_{1}=2$, dobiva se $z=10 i x_{4}=1, x_{5}=3, x_{6}=2$. Međutim, ako se zadrži $x_{2}=x_{3}=0$ i stavi $x_{1}=3$, dobiva se $z=15 i x_{4}=x_{5}=x_{6}=-1 ;$ a to se ne može prihvatitit, s obzirom na to da ograničenja zahtijevaju $x_{i} \geq 0$ za svaki i. Bit je u tome da se ne može povećavati x_{1} previše. Pitanje je: za koliko se točno može povećavati x_{1} (zadržavajući istovremeno $x_{2}=x_{3}=0$) a da $x_{4}, x_{5}, x_{6} \geq 0$?

Uvjet $x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \geq 0$ je zadovoljen za $x_{1} \leq 5 / 2$, a slično tome, $x_{5} \geq 0$ je zadovoljen za $x_{1} \leq 11 / 4$ i $x_{6} \geq 0$ je zadovoljen za $x_{1} \leq 8 / 3$. Od tih triju ograničenja, prvo je najstrože. Povećavajući x_{1} do te granice, dobiva se sljedeće moguće rješenje,

$$
\begin{equation*}
x_{1}=\frac{5}{2}, x_{2}=0, x_{3}=0, x_{4}=0, x_{5}=1, x_{6}=\frac{1}{2} \tag{3.6}
\end{equation*}
$$

Valja primijetiti da to rješenje daje $z=25 / 2$, što je zaista poboljšanje u odnosu na $z=0$.

Zatim, mora se potražiti moguće rješenje koje je čak bolje od (3.6), u smislu da je na njemu funkcija cilja $z>25 / 2$. Međutim taj je zadatak malo teži. Što je učinilo prvo poboljšanje tako lakim? Bilo je na raspolaganju ne samo moguće rješenje (3.5), nego isto tako i sustav linearnih jednadžbi (3.3) koji je omogućio određivanje poboljšanog mogućeg rješenja. Ako se želi nastaviti sličnim putem, mora se razviti novi sustav linearnih jednadžbi koje se odnose prema (3.6) isto kao što se sustav (3.3) odnosi prema (3.5).

Kakva svojstva mora imati novi sustav? Valja obratiti pažnju na to da (3.3) izražava varijable x_{4}, x_{5}, x_{6} koje poprimaju pozitivne vrijednost u (3.5) pomoću vrijednost x_{1}, x_{2}, x_{3} koje poprimaju vrijednost nula u (3.5). Slično tome novi sustav bi morao izražavati one varijable koje poprimaju pozitivne vrijednost u (3.6) pomoću varijabli koje poprimaju vrijednost nula u (3.6): ukratko, u sustavu se mora izraziti x_{1}, x_{5}, x_{6} (a isto tako $i z$) pomoću $x_{2}, x_{3} i x_{4}$. Posebice, varijabla x_{1}, koja je upravo promijenila svoju vrijednost od nule na pozitivnu, morala bi promijeniti svoj položaj s desne strane prijeći na lijevu stranu sustava jednadžbi. Slično tome, varijabla x_{4}, koja je upravo promijenila svoju vrijednost od pozitivne na nulu, morala bi se pomaknuti s lijeve strane na desnu stranu.

Da bi se izradio novi sustav, počet će se od varijable x_{1}. Željena formula za x_{1} pomoću x_{2}, x_{3} i x_{4} lako se dobije iz prve jednadžbe u (3.3):

$$
\begin{equation*}
x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \tag{3.7}
\end{equation*}
$$

a zatim, da bi se izrazili x_{5}, x_{6} i z pomoću x_{2}, x_{3}, x_{4} jednostavno se uvrsti x_{1} iz (3.7) u odgovarajuće redove od (3.3):

$$
\begin{aligned}
& x_{5}=11-4\left(\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4}\right)-x_{2}-2 x_{3}=1+5 x_{2}+2 x_{4} \\
& x_{6}=8-3\left(\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4}\right)-4 x_{2}-2 x_{3}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
& z=\quad 5\left(\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4}\right)+4 x_{2}+3 x_{3}=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{aligned}
$$

Stoga je novi sustav

$$
\begin{align*}
& x_{1}=\frac{5}{2}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4} \\
& x_{5}=1+2 x_{4} \tag{3.8}\\
& x_{6}=\frac{1}{2}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}+\frac{3}{2} x_{4} \\
& z=\frac{25}{2}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}-\frac{5}{2} x_{4}
\end{align*}
$$

Kao što je učinjeno u prvom ponavljanju, sada će se pokušati povećati vrijednost od z povećanjem vrijednosti odgovarajuće odabrane varijable s desne strane, dok će se u isto vrijeme zadržavati preostale varijable s desne strane na vrijednost nula. Valja obratiti pažnju na to da bi povećanje varijabli x_{2} ili x_{4} dovelo do smanjenja vrijednosti z, što je u suprotnosti s namjerom. Stoga, nema izbora: varijabla s desne strane, koja bi povećala vrijednost funkcije z, obvezno je x_{3}. Koliko se može povećati x_{3} ? Odgovor se može pročitati izravno iz sustava (3.8): za $x_{2}=x_{4}=0$, ograničenje $x_{1} \geq 0$ daje $x_{3} \leq 5$, a ograničenje $x_{6} \geq 0$ daje $x_{3} \leq 1$. Stoga je $x_{3}=1$ najbolje što se može učiniti; novo je moguće rješenje

$$
\begin{equation*}
x_{1}=2, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=1, x_{6}=0 \tag{3.9}
\end{equation*}
$$

Valja obratiti pažnju na to da se vrijednost funkcije cilja z upravo povećala s 12.5 na 13.

Postupak se dalje nastavlja, varijable koje su pozitivne: x_{1}, x_{3}, x_{5}, pojaviti će se na lijevoj strani novog sustava jednadžbi, dok će se varijable x_{2}, x_{4}, x_{6} čije su vrijednost nula pojaviti na desnoj strani.

Da bi se načinio sustav, počinje se s varijablom x_{3}. Iz treće jednadžbe u (3.8), je $x_{3}=1+x_{2}+3 x_{4}-2 x_{6}$; zamjenjujući taj izraz za x_{3} u preostalim jednadžbama u (3.8), dobiva se

$$
\begin{align*}
& x_{3}=1+x_{2}+3 x_{4}-2 x_{6} \\
& x_{1}=2-2 x_{2}-2 x_{4}+x_{6} \\
& x_{5}=1+5 x_{2}+2 x_{4} \tag{3.10}\\
& z=13-3 x_{2}-x_{4}-x_{6}
\end{align*}
$$

Sada slijedi treće ponavljanje. Prije svega, mora se odabrati s desne strane od (3.10) varijabla čije povećanje rezultira povećanjem funkcije cilja. Međutim, takve varijable nema: ako se poveća bilo koja od varijabli x_{2}, x_{4}, x_{6} vrijednost funkcije cilja će se umanjiti. Stoga, izgleda, da se došlo do zastoja. Zapravo, sama prisutnost takvog zastoja pokazuje da je gotovo; riješen je problem; rješenje opisano s(3.9) je optimalno. Zašto ? Odgovor je sakriven u zadnjem redu (3.10) :

$$
\begin{equation*}
z=13-3 x_{2}-x_{4}-x_{6} \tag{3.11}
\end{equation*}
$$

Posljednje rješenje (3.9) daje $z=13$; dokazivanje da je to rješenje optimalno vodi do dokazivanja da svako moguće rješenje zadovoljava nejednakost $z \leq 13$. S obzirom na to da svako moguće rješenje $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ zadovoljava (3.6) $x_{2} \geq 0, x_{4} \geq 0$ i $x_{6} \geq 0$, żeljena nejednakost $z \leq 13$ slijedi izravno iz (3.11).

Općenito, kod rješavanja standardnog problema linearnog programiranja: maksimum $\sum_{j=1}^{n} c_{j} x_{j}$

$$
\begin{align*}
& \text { uz ograničenja } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad(i=1,2, \ldots, m) \\
& x_{j} \geq 0 \quad(j=1,2, \ldots, n) \tag{3.12}
\end{align*}
$$

prvo se uvode dopunske varijable $x_{n+1}, x_{n+2}, \ldots, x_{n+m}$ i označi funkcija cilja sa z. To jest, definira se

$$
\begin{align*}
& x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad(i=1,2, \ldots, m) \tag{3.13}\\
& z=\sum_{j=1}^{n} c_{i} x_{j}
\end{align*}
$$

U okviru simpleks metode, skupu mogućih rješenja $x_{1}, x_{2}, \ldots, x_{n}$ prema (3.12) pridružuje se skup nenegativnih brojeva $x_{n+1}, x_{n+2}, \ldots, x_{n+m}$ prema (3.13). U svakom ponavljanju, iteraciji, simpleks metode kreće se od nekoga mogućeg rješenja $x_{1}, x_{2}, \ldots, x_{n+m}$ do drugoga mogućeg rješenja $\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n+m}$ koje je bolje od onoga prethodnog u smislu da je

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} \bar{x}_{j}>\sum_{j=1}^{n} c_{i} x_{j} \tag{3.14}
\end{equation*}
$$

Zapravo, posljednja izjava nije sasvim ispravna: nejednakost nije uvijek stroga; detaljnije o tome u [8].

Kao što je uočeno, pogodno je povezati sustav linearnih jednadžbi sa svim mogućim rješenjima: takvi sustavi olakšavaju pronalaženje poboljšanih mogučih rješenja. To se čini odabirom vrijednosti varijabli s desne strane jednadžbe i računanjem vrijednosti varijabli s lijeve strane jednadžbi te funkcije cilja. Relacije (3.3), (3.8) i (3.10) sadrže istu informaciju glede ovisnosti između sedam varijabli. lpak, svaka od tri relacije predstavlja ovu informaciju na svoj, vlastiti, način. Relacija (3.3) sugerira da je slobodan izbor numeričke vrijednosti od x_{1}, x_{2} i x_{3}, dok su vrijednosti x_{4}, x_{5}, x_{6} i z odredene. U ovim relacijama, varijable odluke, x_{1}, x_{2}, x_{3} ponašaju se kao nezavisne varijable, dok su $z i$ dopunske varijable x_{4}, x_{5}, x_{6} zavisne o njima. Relacija (3.8) predstavlja x_{2}, x_{3}, x_{4} kao nezavisne i x_{1}, x_{5}, x_{6} i z kao zavisne. U relaciji (3.10), nezavisne varijable su x_{2}, x_{4}, x_{6}, a zavisne su x_{3}, x_{1}, x_{5}, z.

Općenito: jednadžbe svake relacije moraju izraziti marijabli ifunkciju cilja z pomoću preostalih n - m varijabli.

Varijable koje se pojavljuju na lijevoj strani relacija nazivaju se bazične; varijable koje se pojavljuju na desnoj strani su nebazične. Naravno bazične varijable se mijenjaju svakom iteracijom. Na primjer u prvoj iteraciji x_{1} postaje bazična, dok X_{4} postaje nebazična. U svakoj iteraciji, prvo se odabiru varijable koje nisu bazične, a koje moraju postati bazične, te se tada otkriva koja bazična varijabla mora postati nebazična. Odabir ulazne varijable je motiviran żeljom za povećanjem vrijednosti z; određivañie varijable koja postaje nebazična
zasnovano je na zahtjevu da sve varijable moraju biti nenegativne. Izlazna varijabla je ona baziéna varijabla koja daje najstrožu gornju granicu na porast ulazne varijable.

Može se odlučiti za različito zapisivanje linearnog problema. Ovdje će se uglavnom proo pisati funkcija cilia i umjesto odrediti maksimum ili minimum jednostavno će se pisati \max () ili \min (), te se može crtom odvojiti funkcija cilja od ograničenja. Razmotrit će se još jedan primjer.

$$
\begin{align*}
\frac{\max \left(5 x_{1}+5 x_{2}+3 x_{3}\right)}{x_{1}+3 x_{2}+x_{3}} & \leq 3 \\
-x_{1}+3 x_{3} & \leq 2 \tag{3.15}\\
2 x_{1}-x_{2}+2 x_{3} & \leq 4 \\
2 x_{1}+3 x_{2}-x_{3} & \leq 2
\end{align*}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

Uvode se dopunske varijable i funkcija z

$$
\begin{align*}
& z=5 x_{1}+5 x_{2}+3 x_{3} \\
& \hline x_{4}=3-x_{1}-3 x_{2}-x_{3} \tag{3.16}\\
& x_{5}=2+x_{1}-3 x_{3} \\
& x_{6}=4-2 x_{1}+x_{2}-2 x_{3} \\
& x_{7}=2-2 x_{1}-3 x_{2}+x_{3}
\end{align*}
$$

Počétno moguće rješenje je

$$
x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=3, x_{5}=2, x_{6}=4, x_{7}=2
$$

U prooj iteraciji, nastojat će se povećati vijednost z, tako da se učini jedna od desnih varijabli pozitivnom. U ovom primjeru, bilo koja od triju varijabli
x_{1}, x_{2}, x_{3} odgovarala bi. U malim primjerima, uobičajena je praksa odabrati varijablu, koja, u formuli za z, ima najveći koeficijent. Povećanje u toj varijabli rezultirati će i povećanjem z na najbrzi način (ali ne obvezno na najvišu razinu). U ovom slučaju to pravilo ostavija izbor između $x_{1} i x_{2}$; birajući proizvoljno, odlučuje se učiniti x_{1} pozitivnim. Kako se povečava vrijednost od x_{1}, tako raste i vijednost od x_{5} . Međutim, vrijednosti od x_{4}, x_{6} i x_{7} se smanjuju, ini jednoj nije dopušteno da postane negativna. Od triju ograničenja $x_{4} \geq 0, x_{6} \geq 0, x_{7} \geq 0$, koja nameću gomje granice na porast od x_{1}, zadnje je ograničenje $x_{7} \geq 0$ najstrože: ono daje $x_{1} \leq 1$. U pobolišanom mogučem ješenju, bit će $x_{1}=1$ i $x_{7}=0$. Kao iu proom primjeru x_{1} prelazi na lijevu stranu, a x_{7} na desnu. Iz četvite jednadžbe u (3.16) je

$$
\begin{equation*}
x_{1}=1-\frac{3}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{7} \tag{3.17}
\end{equation*}
$$

Uvrštavajući x_{1} iz (3.17) u preostale jednadžbe od (3.16), dolazi se do relacija

$$
\begin{align*}
& z=5-\frac{5}{2} x_{2}+\frac{11}{2} x_{3}-\frac{5}{2} x_{7} \\
& x_{1}=1-\frac{3}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{7} \\
& x_{4}=2-\frac{3}{2} x_{2}-\frac{3}{2} x_{3}+\frac{1}{2} x_{7} \tag{3.18}\\
& x_{5}=3-\frac{3}{2} x_{2}-\frac{5}{2} x_{3}-\frac{1}{2} x_{7} \\
& x_{6}=2+4 x_{2}-3 x_{3}+x_{7}
\end{align*}
$$

U ovom primjeru, varijabla koja mora postati bazična tijekom druge iteracije je sasvim nedvosmisleno x_{3}. To je jedina varijabla koja nije bazična u (3.18), a čiji je koeficijent u funkciji cilja pozitivan. Od četiri bazične varijable, x_{6} nameće najstrožu gornju granicu na povećanje od x_{3}, te stoga mora postati nebazična, pa je

$$
\begin{align*}
& z=\frac{26}{3}+\frac{29}{6} x_{2}-\frac{11}{3} x_{7}-\frac{11}{6} x_{6} \\
& x_{3}=\frac{2}{3}+\frac{4}{3} x_{2}+\frac{1}{3} x_{7}-\frac{1}{3} x_{6} \\
& x_{1}=\frac{4}{3}-\frac{5}{6} x_{2}-\frac{1}{3} x_{7}-\frac{1}{6} x_{6} \tag{3.19}\\
& x_{4}=1-\frac{7}{2} x_{2} \\
& x_{5}=\frac{4}{3} x_{6}-\frac{29}{6} x_{2}-\frac{4}{3} x_{7}-\frac{5}{6} x_{6}
\end{align*}
$$

U trećoj iteraciji, ulazna varijabla je x_{2} (postaje bazična), a izlazna x_{5} (postaje nebazična). Nakon treće iteracije je

$$
\begin{align*}
& z=10-2 x_{7}-x_{6}-x_{5} \\
& x_{2}=\frac{8}{29}-\frac{8}{29} x_{7}+\frac{5}{29} x_{6}-\frac{6}{29} x_{5} \\
& x_{3}=\frac{30}{29}-\frac{1}{29} x_{7}-\frac{2}{29} x_{6}-\frac{8}{29} x_{5} \tag{3.20}\\
& x_{1}=\frac{32}{29}-\frac{3}{29} x_{7}-\frac{9}{29} x_{6}+\frac{5}{29} x_{5} \\
& x_{4}=\frac{1}{29}+\frac{28}{29} x_{7}-\frac{3}{29} x_{6}-\frac{21}{29} x_{5}
\end{align*}
$$

Sada ni jedna nebazična varijabla ne može postati bazična bez smanjenja vrijednosti od z. Stoga, zadnja iteracija daje optimalno rješenje problema. To rješenje je

$$
x_{1}=\frac{32}{29}, \quad x_{2}=\frac{8}{29}, \quad x_{3}=\frac{30}{29}
$$

i tada daje $z=10$.

3.1 Simpleks tablica

Često postoji više od jednog načina opisivanja određenog algoritma. Opisi koji imaju za cilj razjašnjenje važnih postupaka zbog didaktičkih prednosti su često sasvim različiti od onih koji sugeriraju učinkovite realizacije na računalu. Simpleks metoda nije izuzetak. U ovom trenu osnovní cilj je ponuditi alate za objašnjavanje osnovnih principa simpleks procedure. Međutim, pri uvođenju metoda za rješavanje velikih problema na računalu, razmatranja učinkovitosti računanja i numerička točnost zasjenjuju didaktičke prednosti.

Simpleks metoda je opća metoda, što će reći da rješava svaki problem linearnog programiranja. Simpleks metoda spada u iterativne metode. Kao što jeveć utvrdeno, ona polazi od nekoga mogućeg rješenja pa ga u nizu koraka poboljšava dok ne dođe do najboljeg, optimalnog rješenja. U svakom koraku prema optimainom rješenju procedura te metode se ponavlja, iterira. Zato se metoda lako primjenjuje na računalu. Simpleks metoda je konačna iterativna metoda jer u konačnom broju iteracija dolazi do optimalnog rješenja.

Da bi se objasnila simples tablica, pogodno je ograničenja problema zapisati u vektorskom obliku. Pokazat će se to na prvom primjeru kojim se bavilo u prethodnoj točki:

$$
\begin{array}{lr}
\frac{\max \left(5 x_{1}+4 x_{2}+3 x_{3}\right)}{2 x_{1}+3 x_{2}+x_{3} \leq} \\
4 x_{1}+x_{2}+2 x_{3} \leq & 11 \\
3 x_{1}+4 x_{2}+2 x_{3} \leq & 8 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Uvođenjem dopunskih varijabli x_{4}, x_{5}, x_{6}, ograničenja iz (3.21) prelaze u kanonski oblik,nejednadžbe prelaze u jednadžbe. Dopunske varijable u funkciji cilja imaju koeficijente $\mathrm{C}_{4}=\mathrm{C}_{5}=\mathrm{c}_{6}=0$, te je kanonski linearni problem

$$
\begin{array}{rl}
\frac{\max \left(5 x_{1}+4 x_{2}+3 x_{3}+0 x_{4}+0 x_{5}+0 x_{6}\right)}{2 x_{1}+3 x_{2}+x_{3}+x_{4}}= & 5 \\
4 x_{1}+x_{2}+2 x_{3}+x_{5} & = \tag{3.22}\\
3 x_{1}+4 x_{2}+2 x_{3} & 11 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{array}
$$

Ograničenja iz (3.22) mogu se napisati u vektorskom obliku

$$
\left[\begin{array}{l}
2 \tag{3.23}\\
4 \\
3
\end{array}\right] x_{1}+\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right] x_{2}+\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] x_{3}+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] x_{4}+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] x_{5}+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] x_{6}=\left[\begin{array}{c}
5 \\
11 \\
8
\end{array}\right]
$$

Ta vektorska jednadžba može se kraće (uz oznake A_{i} vektor uz $x_{i}^{\text {) }}$ pisati ovako:

$$
\begin{equation*}
A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}+A_{4} x_{4}+A_{5} x_{5}+A_{6} x_{6}=B \quad\left(x_{j} \geq 0\right) \tag{3.24}
\end{equation*}
$$

Vektori A_{4}, A_{5}, A_{6} su jedinični vektori $I_{1}, l_{2}, I_{3}\left(l_{1}\right.$ ima na i-tom mjestu jedinicu a na ostalim mjestima nulu). Oni su linearno nezavisni i čine bazu; nazivaju se bazični vektori. Simpleks metoda ne radi bilo skojim mogućim rješenjem, već samo s tzv. bazičnim mogučim rješenjem. Moguće rješenje je svaki vektor

$$
X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]
$$

čije su komponente $x_{i} \geq 0(j=1,2, \ldots, 6)$ koeficijenti linearne kombinacije (3.24).

Općenito moguće rješenje je bazično ako ima najviše m pozitivnih komponenata $u \times t$ j. najviše toliko pozitivnih komponenata koliko ih imaju vektori A_{j} u X (u općem slučaju m je broj ograničenja a n broj nepoznanica). Iz uvjeta nenegativnosti proizlazi da su ostale komponente u X jednake nuli. Ako moguće rješenje ima točno m pozitivnih komponenata, tada se naziva bazično nedegenerirano rješenje. Ako, pak, mogućé rješenje ima manje od m pozitivnih komponenata, tada se naziva bazično degenerirano rješenje. Ubuduće će se raditi uz pretpostavku da je bazično rješenje nedegenerirano. Varijable $x_{i}>0 u$ bazičnom rješenju su bazične varijable , a $x_{1}=0$ nebazične.

Za početno rješenje razmatranog problema (3.22) pogodno je uzeti ovo bazično rješenje:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
5 \\
11 \\
8
\end{array}\right]
$$

Ovom rješenju odgovara baza $\left\{A_{4}, A_{5}, A_{6}\right\}$ trodimenzionalnoga vektorskog prostora. Još jednom če se ponoviti što je baza.

Baza m-dimenzionalnoga vektorskog prostora je svaki skup od m linearno nezavisnih vektora, a skup vektora je lineamo nezavisan ako se nijedan vektor iz tog skupa ne može prikazati kao linearna kombinacija preostalih.

Na primjer, nijedan od jediničnih vektora A_{4}, A_{5}, A_{6} ne može se izraziti pomoću ostala dva kao njihova linearna kombinacija. Zbog toga skup jediničnih vektora A_{4}, A_{5}, A_{6} čini jednu bazu. Svaki vektor iz vektorskog prostora koji nije u bazi może se izraziti kao linearna kombinacija vektora baze. Na primjer,

$$
A_{1}=2 A_{4}+4 A_{5}+3 A_{6}
$$

Očigledno je da je linearna kombinacija vektora baze na desnoj strani znaka jednakosti doista jednaka vektoru A_{1}. Naime,

$$
A_{1}=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+4\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+3\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]
$$

Slično je

$$
\begin{aligned}
& A_{2}=3 A_{4}+A_{5}+4 A_{6} \\
& A_{3}=A_{4}+2 A_{5}+2 A_{6} .
\end{aligned}
$$

Kad se zna što je baza i bazično rješenje, može se prijeći na samu simpleks tablicu.

Koeficijenti uz nepoznanice upisuju se kao stupci, posebno su istaknute komponente vektora B i bazični vektori $A_{4}, A_{5}, A_{6} u$ prvoj simpleks tablici

1. SIMPLEKS TABLICA - T_{1}

c_{i}	BAZA	$\begin{gathered} 5 \\ A_{1} \end{gathered}$	$\stackrel{4}{A_{0}}$	$\begin{gathered} 3 \\ A_{3} \end{gathered}$	$\begin{gathered} 0 \\ A_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathbf{A}_{5} \end{gathered}$	$\begin{aligned} & 0 \\ & \mathbf{A}_{6} \\ & \hline \end{aligned}$	B
0	A_{4}	2	3	1	1	0	0	5
0	A_{5}	4	1	2	0	1	0	11
0	A_{6}	3	4	2	0	0	1	8
	$z_{1}-c_{i}$	-5	-4	-3	0	0	0	0

U bazi su jedinični vektori A_{4}, A_{5}, A_{6} čiji su koeficijenti nula u funkciji cilja, što je napisano kao G . Postavlja se pitanje: kako pobolišati program. Vrijednost funkcije cilia za ovaj program je nula ($z=5 \cdot 0+11 \cdot 0+8 \cdot 0=0$). Proo se donosi odluka koji će vektor ući u bazu. Uvede li se neka aktivnost $A_{i} u$ program (u bazu), mora neki bazični vektor napustiti bazu, njegova bazična varijabla poprima vrijednost nula. Ako se u program uvede, recimo, aktivnost A_{1} da operira na razini 1 , mora se smanjiti bazzicična aktivnost A_{4} za $2, A_{5}$ za $4 i A_{6}$ za 3
jedinice. Kakav će efekt imati to smanjenje baziěnih aktivnosti u funkciji cilja? Za jedinicu povećanja razine aktivnosti A_{j} od 0 na 1 taj efekt će biti jednak

$$
\begin{equation*}
z_{i}=c_{4} a_{1 j}+c_{5} a_{2 j}+c_{6} a_{3 j} \tag{3.25}
\end{equation*}
$$

To je vrijednost za koju se smanji ukupni efekt u funkciji cilja. U ovom primjeru je

$$
z_{1}=0.2+0.4+0.3=0
$$

Budući da dopunske varijable $x_{4}, x_{5}, x_{6} u$ funkciji cilja imaju koeficijente $c_{4}=$ $c_{5}=c_{6}=0$, to je $\mathrm{z}_{1}=0$ za svako $\mathrm{j}=1,2, \ldots, 6$.

Koliki je doprinos jedinice vektora A_{j} ukupnom efektu u funkciji cilja? Očigledno je taj doprinos jednak $\mathrm{c}_{\mathfrak{j}}$ (npr. 3.22).

Sada treba usporediti efekt smanjenja bazičnih aktivnosti s doprinosom vektora A_{j}, tj. $z_{j} s c_{j}$. Ako je $z_{i}>c_{j}$, nema smisla uvoditi u program vektor A_{j}. Ako je pak $z_{i}=c_{i} i \quad A_{i}$ se uvede u program, taj ce se novi program doduše razlikovati od starog, ali neće biti ništa bolji. Ako je $z_{i}<c_{j}$, uvođenje vektora A_{j} u program izmijenit će ga i pobolišati. Prema tome, kriterij za izbor vektora koji će ući u bazu je $z_{j}<c_{j}$ ili $z_{j}-c_{j}<0$. Ta razlika je zapravo stopa porasta funkcije cilja z. Zato je razumljivo što će se izabrati ona aktivnost A_{s} za koju je stopa porasta funkcije cilja $\left|z_{j}-c_{i}\right|$ maksimalna, to jest

$$
\begin{equation*}
z_{s}-c_{s}=\min _{j}\left(z_{i}-c_{j}\right), \quad z_{i}-c_{i}<0 \tag{3.26}
\end{equation*}
$$

Iz simpleks tablice vidi se da je

$$
z_{1}-c_{1}=-5=\min _{j}\left(z_{i}-c_{j}\right), \text { za } z_{i}-c_{i}<0
$$

Prema tome, izbor je pao na aktivnost A_{1}, što je u tablici zasjenčeno. Vektor A_{1} ulazi u bazu. Postavlja se pitanje: koji vektor izlazi iz baze. Da se ne bi dobile negativne komponente vektora B , traži se

$$
\min \left\{\frac{5}{2}, \frac{11}{4}, \frac{8}{3}\right\}=\frac{5}{2}
$$

Iz baze izlazi vektor A_{4} a ulazi A_{1}. Izbor vektora koji izlazi iz baze u općem slučaju određuje se ovako

$$
\begin{equation*}
\frac{b_{r}}{a_{r s}}=\min _{i}\left(\frac{b_{i}}{a_{i s}}\right) \quad a_{i s}>0 \tag{3.27}
\end{equation*}
$$

Izabrani stupac označen je sa s, a izabrani redak s r. Na presjeku s-tog stupcai r-tog retka je element $a_{r s}$. On se zove kjjuc̆ni ili temeljni element. Taj element je djelitelj koji odgovara minimalnom kvocijentu. Sa strane u relaciji (3.27) naznačeno je da divizor $a_{i s}$ mora biti pozitivan. U ovom primjeru svi elementi u izabranom stupcu $s=1$ pozitivni su.

Transformacija prve u drugu simpleks tablicu povodi se prema sljedećim formulama:

$$
\begin{align*}
& a_{i j}^{\prime}=\frac{a_{i j}}{a_{r s}}, \quad j=1,2, \ldots, n \tag{3.28}\\
& a_{i j}^{\prime}=a_{i j}-a_{i j}^{\prime} a_{i s} \quad(i \neq r), \quad j=1,2, \ldots, n \tag{3.29}
\end{align*}
$$

gdje su $a_{i j}^{\prime}$ elementi nove tablice, $a \quad a_{i j}$ stare tablice, prema (3.29) $a_{i s}^{\prime}=0$ za $i=1,2, \ldots$ osim $a_{i s}^{\prime}=1$. Iz (3.28) slijedi da svaki element $a_{i j} u$ izabranom retku r stare tablice treba podijeliti s ključnim elementom $a_{r s}$ da se dobije odgovarajući element nove tablice. Prema (3.29) element iz \mathbf{i}-tog retka j-tog stupca nove tablice $a_{i i}^{\prime}$ dobije se tako da se od odgovarajućeg elementa stare tablice $a_{i j}$ oduzme produkt elementa $a_{i s}$ iz izabranog stupca $s i$ retka is novoformiranim elementom $\mathrm{a}_{\mathrm{r} .} \mathrm{Na}$ taj način dobili su se elementi druge simpleks tablice.

2. SIMPLEKS TABLICA $-T_{2}$

c_{j}		$\begin{aligned} & 5 \\ & \mathrm{~A}_{1} \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~A}_{2} \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{~A}_{3} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & \mathbf{A}_{4} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{A}_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & A_{6} \end{aligned}$	B
5	A_{1}	1	3/2	1/2	1/2	0	0	5/2
0	A_{5}	0	-5	0	-2	1	0	1
0	A_{6}	0	$-1 / 2$		-3/2	0	1	1/2
	$z_{i}-c_{j}$	0	7/2	$-1 / 2$	5/2	0	0	25/2

Formula (3.29) može se napisati na sljedeči način:

$$
\begin{equation*}
a_{i i}^{\prime}=\frac{a_{i j} a_{r s}-a_{i j} a_{i s}}{a_{r s}} \tag{3.30}
\end{equation*}
$$

Za svaki element prethodne tablice (osim elemenata u retku gdje je ključni element) može se uočiti četverokut ili determinanta drugog reda, gdje je vrijednost brojnika izraza (3.30) produkt na glavnoj dijagonali umanjen za produkt na sporednoj dijagonali:

Uzme li se element a_{24}^{\prime} nove tablice, odgovarajući četverokut u staroj tablici je:

U drugoj simpleks tablici uočava se da vektor koji je ušao u bazu, u ovom slučaju A_{1}, ima na mjestu ključnog elementa komponentu 1 a sve ostale su komponente nula. Transformacija iz 1. simpleks tablice u 2. simpleks tablicu mogla se načiniti i na sljedeći način:

- redak u kojem je kjučni element podijeli se s kjjučnim elementom i tako se dobije prvi redak u 2. simpleks tablici;
- prvi redak 2. simpleks tablice (redak u kojem je bio ključni element prethodne tablice) pomnoži se s-4 i zbroji s drugim retkom 1. simpleks tablice; tako se dobije drugi redak 2 . simpleks tablice;
- prvi redak 2. simpleks tablice pomnoži se s - 3 i zbroji s trecím retkom prethodne simpleks tablice i dobije se trecii redak 2 . simpleks tablice.

U 2. simpleks tablici $Z_{3}-C_{3}<0$, znači vektor A_{3} ulazi u bazu. Treba naći vektor koji će izići iz baze. Element $\mathrm{a}_{23}=0$, pa on ne može biti ključni element.

Traži se

$$
\min \left\{\frac{\frac{5}{2}}{\frac{1}{2}}, \frac{\frac{1}{2}}{\frac{1}{2}}\right\}=1
$$

element a_{33} je ključni element, znači u bazu ulazi vektor A_{3} a izlazi vektor A_{6}.

Novu bazu u 3．simpleks tablici čine vektori $\left\{A_{1}, A_{5}, A_{3}\right\}$ ．
Treći redak 2．simpleks tablice，redak gdje se nalazi ključni element，podijeli se s ključnim elementom ty．s $1 / 2$ ili pomnoži $s 2$ ，i tako se dobije treći redak 3. simpleks tablice．

Element $a_{23}=0$ u 2．simpleks tablici i taj se redak prepiše u 3．simpleks tablicu．Da bi se na mjestu $a_{13} \cup 3$ ．simpleks tablici dobila nula，treći redak 3. simpleks tablice pomnoži se s－1／2i zbroji s prvim retkom prethodne simpleks tablice te se dobije prvi redak nove tablice

3．SIMPLEKS TABLICA－ T_{3}

c_{j}		$\begin{aligned} & 5 \\ & A_{1} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{~A}_{2} \\ \hline \end{gathered}$	$\begin{array}{r} 3 \\ \mathrm{~A}_{3} \end{array}$	$\begin{gathered} 0 \\ \mathrm{~A}_{4} \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & A_{5} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \mathrm{~A}_{6} \\ \hline \end{gathered}$	B
5		1	2	0	2	0	－1	Kiv
0		0	－5	0	－2	1	0	
3	裂	0	－1	1	－3	0	2	全
	$z_{i}-c_{i}$	0	－ 3	0	1	0	1	皦13變

Kako su svi elementi $z_{j}-c_{j} \geq 0$ ，došlo se do optimalnog rješenja：

$$
x_{1}=2, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=1, x_{6}=0
$$

Vrijednost funkcije cilja $z=5 x_{1}+4 x_{2}+3 x_{3}=13$ ，pročita se ispod vektora B ．
Svako bazično rješenje koje se dobilo simpleks metodom bilo je nedegenerirano．Dobivena su 3 različita bazična moguća rješenja：

$$
X_{1}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
5 \\
11 \\
8
\end{array}\right], \quad X_{2}=\left[\begin{array}{c}
5 / 2 \\
0 \\
0 \\
0 \\
1 \\
1 / 2
\end{array}\right], \quad X_{3}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

Svakom tom rješenju odgovara jedna ekstremna točka skupa svih mogućih rješenja u trodimenzionalnom prostoru，to jest

$$
(0,0,0), \quad(5 / 2,0,0), \quad(2,0,1)
$$

Ravnajući se po kriteriju najveće stope rasta，išlo se po simpleks metodi od ishodišta $(0,0,0)$ ，preko točke $(5 / 2,0,0)$ do optimalne točke $(2,0,1)$ ．To je najkraći put do optimainog rješenja（toc̆ke u kojoj funkcija cilja poprima ekstremnu vrijednost）．

U svakom slučaju, simpleks metoda polazi od neke ekstremne točke pa, idući od jedne do druge susjedne ekstremne točke, dospjeva do optimalne.

Da se ne zna simpleks metoda morala bi se odrediti sva baziěna rješenja, kojih ima koliko i razicicitih baza. U ovom primjeru od 6 vektora $A_{1}, A_{2}, A_{3}, A_{4}, A_{51}$ A_{6} ima najviše $\binom{6}{3}=\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3}=20$ baza.

3.2 Rješenje standardnog problema minimuma - Charnesova M procedura

Razmatrat će se standardni problem minimuma, npr. zadatak 4 u poglavlju 2. Matematički model tog problema je

$$
\begin{gathered}
\min \left(50 x_{1}+40 x_{2}\right) \\
20 x_{1}+30 x_{2} \geq 900 \\
40 x_{1}+30 x_{2} \geq 1200 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Ograničenja se mogu pisati u obliku jednadžbi uvodeći dopunske varijable $\mathrm{v}_{1} \geq 0, \mathrm{i} \mathrm{v}_{2} \geq 0$. Tada je:

$$
\begin{aligned}
20 x_{1}+30 x_{2}-v_{1} & =900 \\
40 x_{1}+30 x_{2}-v_{2} & =1200
\end{aligned}
$$

Uočava se da vektori koeficijenata varijabli $v_{1} i v_{2}$ nisu jedinični vektori s pozitivnim komponentama. Takvi jedinični vektori ne mogu dati nenegativno početno bazično rješenje.

Uvode se nove varijable w_{1} i w_{2} koje se nazivaju artificijelne (umjetne) varijable, jer nemaju konkretnog značenja, osim što služe kao kalkulativno sredstvo. Da se te varijable ne bi pojavile u optimalnom rješenju, pridružuje im se nespecificirani veliki pozitivni broj M kao koeficijent u funkciji cilja. Tako je originalni problem prešao u ovaj problem:

$$
\begin{aligned}
& \min \left(50 x_{1}+40 x_{2}+0 v_{1}+0 v_{2}+M w_{1}+M w_{2}\right) \\
& 20 x_{1}+30 x_{2}-v_{1}+w_{1}=900 \\
& 40 x_{1}+30 x_{2}-v_{2}+w_{2}=1200 \\
& x_{1}, x_{2} \geq 0, \quad v_{1}, v_{2} \geq 0, \quad w_{1}, w_{2} \geq 0
\end{aligned}
$$

Tu metodu pridruživanja broja M artificijelnom vektoru, da bi ga istjerao iz baze, prvi je sugerirao A. Charnes [10].

Ako originalni problem ima jedno moguće rješenje, tada i prošreni sustav ima neko nenegativno rješenje. Ako ne postoji moguće rješenje originalnog problema,
tada će minimaino nenegativno ješenje proširenog problema sadržavati bar jednu pozitivnu artificijelnu varijablu $w_{k}>0$, dakle u tom slučaju ne može se osloboditi umjetnih varijabli.

U početnoj tablici s lijeve strane figurira artificijelna baza [W $\left.W_{1}, W_{2}\right]$.

BAZA	$\begin{aligned} & 50 \\ & A_{1} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{~A}_{2} \end{aligned}$	$\begin{gathered} 0 \\ v_{1} \end{gathered}$	$\begin{gathered} 0 \\ V_{2} \end{gathered}$	$\begin{aligned} & M \\ & W_{1} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~W}_{2} \end{aligned}$	B
M W ${ }_{1}$	20		-1	0	1	0	900
M W	40	30	0	-1	0	1	1200
$z_{i}-c_{i}$	60.M	60.M	- M	-M			2100.M
	- 50	-40			0	0	
$40 A_{2}$	2/3	1	-1/30	0	-	0	30
M W ${ }_{2}$		0	1	-1	-	1	300
$z_{i}-c_{j}$	$\begin{aligned} & 20 \cdot M \\ & -70 / 3 \end{aligned}$	0	M	- M	-	0	300-M +
			-4/3				1200
$40 \mathrm{~A}_{2}$	0	1	-1/15	1/30	-	-	20
$50 A_{1}$	1	0	1/20	-1/20	-	-	15
$z_{j}-c_{j}$	0	0	-1/6	-7/6			1550

Uz ove tablice potrebna su neka objašnjenja. Ona se tiču prije svega dvaju redaka $m+1$ i $m+2$ koji su sadržani $u z_{i}-c_{j}$. Brojevi u retku $m+1$ su koeficijenti od M, brojevi u retku $m+2$ su nezavisni od $M u$ definiciji $z_{i}-c_{i}$. Na primjer, u prooj tablici je

$$
\begin{aligned}
& z_{1}-c_{1}=20 M+40 M-50=60 M-50 \\
& z_{2}-c_{2}=30 M+30 M-40=60 M-40 \text { itd. }
\end{aligned}
$$

Budući da je broj M po pretpostavci velik pozitivni broj, pri traženju minimuma u bazu ulazi onaj vektor pod kojim je najveći pozitivni broj, u ovom slučaju to je A2. Vektor koji izlazi iz baze dobije se tako da se odredimo najmanji kvocijent komponenata vektora B i komponenata vektora koji ulazi u bazu. Kako je

$$
\min \left\{\frac{900}{30}=30, \frac{1200}{30}=40\right\}=30
$$

ključni element je $a_{12}=30$; vektor W_{1} izlazi iz baze. Čim se jedan artificijeini vektor eliminira iz baze, taj vektor više nije potreban u tablici; zato u drugoj tablici nema komponenata vektora W_{1}. Naime, može se pokazati da se artificijelni vektor nikada ne vraća u bazu kad je jednom napusti [2]. Kao i ranije,
prvi redak druge tablice dobiven je tako da se prvi redak prethodne tablice podijelio s ključnim elementom, tj. sa 30 . Drugi redak druge tablice dobio se tako da se prvi redak druge tablice pomnožio s-30 i zbrojio s drugim retkom prve tablice.
U drugoj tablici najveći pozitivni broj u retku $z_{i}-q_{i}$ je ispod vektora A_{1}; taj vektor ulazi u bazu a izlazi W_{2}.

Redak $z_{i}-c_{j} u$ trećoj tablici sadrži samo $0 i$ negativne brojeve; došlo se do optimalnog rješenja: $x_{1}=15, x_{2}=20$ i funkcija cilja $z=1550$.

3.3 Opći oblik problema linearnog programiranja

U općem obliku problema linearnog programiranja postoje ograničenja \geq, \leq, $=$. Pomoću simpleks tablice rješava se sljedeći linearni problem:

$$
\begin{aligned}
& \frac{\min \left(8 x_{1}+12 x_{2}+2 x_{3}+6 x_{4}\right)}{4 x_{1}+6 x_{2}+3 x_{3}+2 x_{4}} \leq 80 \\
& 3 x_{1}+x_{2}+5 x_{3}+x_{4} \geq 60 \\
& 2 x_{1}+5 x_{2}+3 x_{4}=40
\end{aligned}
$$

Kanonski oblik postavljenog problema je

$$
\begin{aligned}
& \frac{\min \left(8 x_{1}+12 x_{2}+2 x_{3}+6 x_{4}+0 u_{1}+0 v_{1}+M w_{1}+M w_{2}\right)}{4 x_{1}+6 x_{2}+3 x_{3}+2 x_{4}+u_{1}} \\
& 3 x_{1}+x_{2}+5 x_{3}+x_{4}-v_{1}+w_{1}=80 \\
& 2 x_{1}+5 x_{2}+3 x_{4}=60 \\
&=40
\end{aligned}
$$

Uvedene su dopunske varijable u_{1}, v_{1}, koje ulaze u funkciju cilja s koeficijentom 0 te artificijelne varijable w_{1}, w_{2} koje u funkciiji cilja kod trażenja minimuma imaju koeficijent + M. Ako se traži maksimum artificijelne varijable, u funkciju cilla ulaze s koeficijentom - M. Simpleks tablica postavljenoga linearnog problema je

	$\begin{array}{r} 8 \\ A_{1} \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \mathrm{~A}_{2} \end{aligned}$	$\begin{gathered} 2 \\ \mathrm{~A}_{3} \end{gathered}$	$\begin{aligned} & 6 \\ & A_{4} \end{aligned}$	$\begin{gathered} 0 \\ U_{1} \end{gathered}$	$\begin{gathered} 0 \\ V_{1} \end{gathered}$	$\begin{gathered} M \\ W_{1} \end{gathered}$	M W_{2}	B
$0 U_{1}$	4	6	3	2	1	0	0	0	80
$\mathrm{M} \mathrm{W}_{1}$	3	1	5	1	0	-1	1	0	60
$\mathrm{M} \mathrm{W} \mathrm{W}_{2}$	2		0	3	0	0	0	1	40
$z_{i}-c_{j}$	5M-8	$6 . \mathrm{M}-12$	5. M-2	$4 . M-6$	0	-M	0	0	100.M

	$\begin{aligned} & 8 \\ & A_{1} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{~A}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & \mathrm{~A}_{3} \end{aligned}$	$\begin{aligned} & 6 \\ & A_{4} \end{aligned}$	$\begin{gathered} 0 \\ U_{1} \end{gathered}$	$\begin{gathered} 0 \\ V_{1} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{~W}_{1} \end{gathered}$	M W_{2}	B
$0 U_{1}$	8/5	0	3	-8/5	1	0	0		32
M W ${ }_{1}$	13/5	0		2/5	0	-1	1		52
$12 \mathrm{~A}_{2}$	2/5	1	0	3/5	0	0	0		8
$z_{i}-c_{i}$	$\begin{array}{r} 13 / 5 \cdot M \\ -16 / 5 \end{array}$	0	$\begin{aligned} & 5 M \\ & -2 \end{aligned}$	$\begin{aligned} & 2 / 5 M \\ & +6 / 5 \end{aligned}$	0	-M	0	0	$\begin{array}{r} \hline 52 \mathrm{M} \\ +96 \end{array}$
$0 \mathrm{U}_{1}$	1/25	0	0	-46/25	1	3/5			4/5
$2 \mathrm{~A}_{3}$	13/25	0	1	2/25	0	$-1 / 5$			52/5
$12 \mathrm{~A}_{2}$	2/5	1	0		0	0			8
$z_{i}-c_{j}$	$-54 / 25$	0	0	34/25	0	$-2 / 5$			584/5
$0 \mathrm{U}_{1}$	19/15	46/15	0	0	1	3/5			76/3
$2 \mathrm{~A}_{3}$	7/15	-2/15	1	0	0	$-1 / 5$			28/3
$6 \mathrm{~A}_{4}$	2/3	5/3	0	1	0	0			
$z_{i}-c_{i}$	-46/15	$-34 / 5$	0	0	0	-2/5			296/3

Optimalno rješenje je: $x_{1}=0, x_{2}=0, x_{3}=\frac{28}{3}, x_{4}=\frac{40}{3}, z=\frac{296}{3}$
Lako je provjeriti da to rješenje zadovoljava zadana ograničenja.
Odluke o uvođenju dopunskih i artificijelnih varijabli te o koeficijentima simpleks jednadžbi i koeficijentima u funkciij cilja može se tablično prikazati:

Tablica za izbor dopunskih i artificijelnih varijabli			Tip početnih uvjeta		
			\leq	$=$	\geq
Pri pretvaranju početnih uvjeta u simpleks jednadžbe uvode se	dopunske varijable		DA	NE	DA
	artificijelne varijable		NE	DA	DA
Koeficijenti u simpleks jednadžbama	uz dopunske varijable		+ 1	1	-1
	uz artificijelne varijable		1	+1	$+1$
Koeficijenti u funkciji cilja	uz dopunske varijable		0	1	0
	uz artificijelne	traži se maksimum	1	- M	-M
	varijable	traži se minimum	1	+M	+M

Univerzitet u Zenici
Pedagoški fakultet
Odsjek: Matematika i informatika
Zenica, 12.02.2010.

Pismeni ispit iz Operacionih istraživanja

1. Riba se izlovljava u uzgajalištima I_{1}, I_{2}, I_{3}. Svako jutro riba kreće put ribarnica koje se nalaze u mjestima R_{1}, R_{2}, R_{3} i R_{4}. Iz uzgajališta I_{1} do ribarnica prijevoz traje redom: 2, 5, 9 i 6 sati. Da bi iz I_{2} riba došla u spomenute ribarnice treba po 1 , 7 , 3 i 8 sati. Konačno, prijevozi iz I_{3} traju 5, 9 do ribarnica R_{1}, R_{2}, te po 3 i 4 sata do ribarnica R_{3} i R_{4} (respektivno). Na uzgajalištima je na raspolaganju: $80 \mathrm{t}, 120 \mathrm{t}, 160 \mathrm{t}$ dnevno, a ribarnice potražuju redom: $100 \mathrm{t}, 40 \mathrm{t}, 150 \mathrm{t}$ i 110 t dnevno.

Kako treba prevesti ribu da ukupno vrijeme transporta bude minimalno.
Napraviti takav plan transporta da je što je moguće manje ribe na najdužem putu. Za polazno bazično rješenje uzeti rješenje dobijeno pod a)
2. Za matričnu igru definisanu matricom cijena odrediti optimalne strategije igrača i vrijednost igre:

strategije	B1	B2	B3	B4
A1	10	10	2	2
A2	2	2	9	9
A3	5	10	5	10
A4	4	2	4	2

3. Na osnovu sastavljene liste određenog skupa aktivnosti sa njihovim međuzavisnostima i determinisanim vremenima realizacije pojedinih aktivnosti, oblikovati i proračunati mrežni dijagram CPM (naći kritični put, najraniji početak, najraniji kraj, najkasniji početak, najkasniji kraj i vremenske rezerve)

Aktivnosti	trajanje	preduvjeti
\mathbf{A}	3	-
\mathbf{B}	6	-
\mathbf{C}	4	-
D	7	A
\mathbf{E}	8	A,B
F	10	A,B
\mathbf{G}	12	A,B
\mathbf{H}	8	C
\mathbf{I}	6	D,E
\mathbf{J}	7	H,G
\mathbf{K}	2	I,J,F

4. Problem riješiti Gomorijevom metodom:

$$
\begin{aligned}
& (\min) f=4 x+6 y \\
& x+5 y \geq 60 \\
& x+y \geq 45 \\
& x, y \in \mathbb{N}_{0}
\end{aligned}
$$

Univerzitet u Zenici

Pedagoški fakultet
Odsjek: Matematika i informatika
Zenica, 29.01.2010.

Pismeni ispit iz Operacionih istraživanja

1. Radna organizacija je nabavila pet mašine, specijalizovane za proizvodnju pojedinog sastavnog dijela složenog proizvoda. Potrebno je zaposliti pet radnika na ove mašine, tako da jedan radnik može raditi istovremeno samo na jednoj mašini. Konkursna komisija radne organizacije je odlučila da osnovni kriterijum za izbor radnika bude škart na proizvodima. Svaki radnik je proizveo isti broj proizvoda na svakoj mašini. Pri tome je bio procenat škarta na proizvodima kao što je dato u tabeli:

	M1	M2	M3	M4	M5
R1	4	7	11	8	6
R2	6	8	4	2	2
R3	6	10	6	5	5
R4	11	6	7	8	4
R5	5	6	11	5	10

Kako rasporediti radnike na mašine da bi ukupan procenat škarta na proizvodima bio najmanji?
2. Za matričnu igru definisanu matricom cijena odrediti optimalne strategije igrača i vrijednost igre:

strategije	B1	B2
A1	1	-1
A2	0	1
A3	-1	0
A4	2	-3
A5	1	2

3. Na osnovu sastavljene liste određenog skupa aktivnosti sa njihovim međuzavisnostima i determinisanim vremenima realizacije pojedinih aktivnosti , oblikovati i proračunati mrežni dijagram CPM (naći kritični put, najraniji početak, najraniji kraj, najkasniji početak, najkasniji kraj i vremenske rezerve)

Aktivnosti	A	B	C	D	E	F	G	H	I	J
Zavisiod	-	-	B	A, C	B	B	D, E	D, E, F	D, E, F	G, H
trajarije	6	7	2	3	4	3	5	8	9	4

4. Dva modela stolica P_{1} i P_{2} pri izradi prolaze kroz dvije mašine: M_{1}, M_{2}. Vrijeme obrade u satima po komadu i kapaciteti mašina dati su u tabeli:

		Mašine	
		M_{2}	
proizvod	P_{1}	2	3
	P_{2}	1	-
Kapaciteti mašina		20	10

Stolica P_{1} prodaje se po cijeni od 14 , stolica P_{2} po cijeni od 4 novčane jedinice. Kako treba planirati proizvodnju da se ostvari maksimalna dobit? Problem rješavati metodom grananja i ograničavanja.

[^0]: \dagger One common method used in practice is to consider subdivisions on a last-generated-first-analyzed basis. We used this rule in our previous example. Note that data to initiate the dual-simplex method mentioned above must be stored for each subdivision that has yet to be analyzed. This data usually is stored in a list, with new information being added to the top of the list. When required, data then is extracted from the top of this list, leading to the last-generated-first-analyzed rule. Observe that when we subdivide a region into two subdivisions, one of these subdivisions will be analyzed next. The data required for this analysis already will be in the computer core and need not be extracted from the list.

[^1]: ${ }^{\dagger}$ To fathom is defined as "to get to the bottom of; to understand thoroughly.' In this chapter, fathomed might be more appropriately defined as "understood enough or already considered."

